Ashish Bora

Contact	Phone :+1-512-888-7364Address :4210 Red River St, Apt 106, Austin, TX - 78751Email :ashish.bora@utexas.eduWebpage :http://www.cs.utexas.edu/~ashishb/		
INTERESTS	Machine Learning - algorithms, optimization, architectures, and applications.		
Education	University of Texas at Austin2015-PresentPursuing Masters (expected Dec 2017) and Doctorate in Computer ScienceGPA : 3.93/4.0Indian Institute of Technology Bombay, India2011-2015Bachelor of Technology (Honors) in Electrical Engineering Minor in Computer ScienceMajor GPA : 9.64/10.0 (Rank 4)Minor GPA : 9.60/10.0Minor GPA : 9.60/10.0		
Publications	 Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis. Compressed Sensing using Generative Models. International Conference on Machine Learning, 2017. Ashish Bora, Sugato Basu, Joydeep Ghosh. Graphical RNN models. arXiv preprint, 2016. Ashish Bora, Vivek S. Borkar, Dinesh Garg and Rajesh Sundaresan. Edge Conductance Estimation Using MCMC. Allerton Conference on Communication, Control, and Computing 2016. Ashish Bora, Arjun Rao and Bipin Rajendran. Mimicking the worm - an adaptive spiking neural circuit for contour tracking inspired by C. Elegans Thermotaxis. International Joint Conference on Neural Networks, 2014. 		
Research Experience	 Compressed Sensing using Generative Models Nov'16-Feb'17 Joint work with: Ajil Jalal, Prof. Eric Price, Prof. Alex Dimakis We use generative models to represent structure instead of the standard sparsity assumption If the generative model is L-Lipschitz, then O(k log L) random Gaussian measurements suffice for an ℓ₂/ℓ₂ recovery guarantee using our method Using variational autoencoder and generative adversarial networks we show that our method can use 5-10x fewer measurements than Lasso for the same accuracy 		
	 Graphical RNN Models May'16-Aug'16 Joint work with: Dr. Sugato Basu, Prof. Joydeep Ghosh Proposed a new framework for learning from data with spatio-temporal structure Our framework builds on powerful capabilities of recurrent neural networks, while offering several ways to incorporate domain knowledge, much like a graphical model Demonstrated improved performance for a weather prediction task 		
	 Edge Conductance Estimation using MCMC Jul'14-May'15 Joint work with: Prof. Vivek Borkar, Prof. Rajesh Sundaresan, Dr. Dinesh Garg Devised an MCMC based algorithm for efficient estimation of effective edge conductances Our algorithm is memory efficient, makes very few computations per step, uses only local information, and can be easily distributed and parallelized Provided probabilistic (PAC) guarantees on algorithm performance by deriving sample complexities using tools from the theory of Markov chains and concentration inequalities 		
	 Bio-inspired Spiking Neural Networks for 2-D contour tracking May'13-Jan'14 Joint work with: Arjun Rao, Prof. Bipin Rajendran Inspired by C. Elegans thermotaxis, designed a model for exploration and tracking dynamics Designed a SNN with time-dependent adaptive plastic synapses to realize these dynamics Our neural circuit can identify isotherms with ~60% higher probability than the theoretically optimal memoryless Levy foraging, and sparse spiking enables energy-efficient implementations 		

- TECHNICAL Programming Languages: Python, C++, MATLAB
 - Packages and Tools: TensorFlow, Torch

Skills

INTERNSHIPS Software Engineering Intern, Google Brain

Google Research, New York. Host: Dr. Jeffrey Pennington.

Working on understanding and improving training of recurrent neural networks for tasks with very long range dependencies.

Software Engineering Intern, Google Research

Machine Intelligence Group, Mountain View, California. Host: Dr. Sugato Basu.

Proposed Graphical RNN models as a framework to model spatio-temporal data. Memory efficient implementation using truncated backpropagation through time in TensorFlow. Improved performance on a weather prediction task.

Quantitative Analyst Intern, Goldman Sachs

Controllers Modeling, Finance Division, Bangalore, India

For the task of finding nearest consistent correlation matrix from many incomplete and inconsistent data sources, obtained a provably optimal algorithm using Dykstra's cyclic projection idea. Implemented the algorithm and gained 40x speedup.

Learning to Learn by Gradient Descent by Reinforcement Learning Fall 2017

- Deep Reinforcement Learning agent to output the learning rate for each SGD optimization step
- Demonstrated generalization on a family of quadratic optimization problems

Low-supervision Visual Learning through Cooperative Agents Spring 2016

- Proposed to create a supervisory signal by asking an agent to find one image from a collection
- To exploit this signal, proposed a system of two agents which play a partial information cooperative game to complete the disambiguation task
- Modeled each agent as a Convolutional Neural Network and demonstrated learning with an image attribute based dialog system

Description to Algorithm Category

- Given a natural language description of an algorithmic programming problem, the task is to find the algorithm category (e.g. Dynamic Programming), that will be used to solve the problem
- Used LSTM on word2vec embeddings of input text to output a score for each category

Automatic Traffic Surveillance System using videos

- Adaptive background estimation via online Gaussian mixture model fitting
- Moving object detection using background subtraction, thresholding, median filtering, morphological closing and connected component analysis

Relevant	Probability:	Measure Theory, Advanced Probability and Random Processes, Markov	
Coursework	Optimization:	Chains and Queuing Systems, Markov Decision Processes Linear and Integer Programming, Stochastic Optimization, Discrete Op-	
	Algorithms:	timization, Convex Optimization Data Structures and Algorithms, Discrete Structures, Design and Analysis	
	Machine Learning:	of Algorithms, Randomized Algorithms, Communication Complexity Foundations of Machine Learning, Large scale Machine Learning, Neural	
	-	Networks for Machine Learning, Probabilistic Graphical Models, Deep	
	Applications:	Learning Seminar, Reinforcement Learning Image Processing, Computer Vision, Visual Recognition, Speech Process-	
		ing, Natural Language Processing	
Scholastic Achievements and Awards	 Received the Undergraduate Research Award for the work on bio-inspired neural networks Awarded an AP grade (given for exceptional performance) in two courses : Linear Algebra and 		
	Advanced Probability and Random Processes		
	• Scored a perfect Sem	ester Performance Index in 3 out of 8 semesters at IIT Bombay	

- Secured All India Rank 58 in AIEEE-2011 out of about 1.1 million candidates
- Secured All India Rank 400 in IITJEE-2011 out of about 460,000 candidates
- Recipient of the National Talent Search Scholarship 2007 awarded to less than top 1% applicants

COURSE Projects May'17-Aug'17

May'16-Aug'16

Autumn 2013

May'14-July'14

Spring 2016