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Abstract—We demonstrate a spiking neural circuit with
timing-dependent adaptive synapses to track contours in a two-
dimensional plane. Our model is inspired by the architecture
of the 7−neuron network believed to control the thermotaxis
behavior in the nematode Caenorhabditis Elegans. However,
unlike the C. Elegans network, our sensory neuron only
uses the local variable (and not its derivative) to implement
contour tracking, thereby minimizing the complexity of im-
plementation. We employ spike timing based adaptation and
plasticity rules to design micro-circuits for gradient detection
and tracking. Simulations show that our bio-mimetic neural
circuit can identify isotherms with a ∼ 60% higher probability
than the theoretically optimal memoryless Lévy foraging model.
Further, once the set-point is identified, our model’s tracking
accuracy is in the range of ±0.05 ◦C, similar to that observed
in nature. The neurons in our circuit spike at sparse biological
rates (∼ 100 Hz), enabling energy-efficient implementations.

I. INTRODUCTION

Microbes and small organisms have been found to pref-
erentially migrate along regions of identical temperature
(thermotaxis) [1] or chemical concentration (chemotaxis)
[2]. Such behavior is extremely important for the organism
as it helps it to scavenge for food or to avoid noxious
environmental conditions. In single-celled microbes, it is
believed that such behaviors are mediated by chemoreceptor
proteins which control the probability of tumbling resulting
in a random walk that is biased towards the desired con-
centration or temperature. In higher organisms, it has been
shown that there are specific sensory neurons and neural
networks that control the run and turn probability, which
in turn helps the organism to track contours of identical
temperature or chemical concentration.

The nematode Caenorhabditis Elegans is widely consid-
ered today as the model organism for fundamental studies in
developmental biology. Starting from the pioneering work of
Sydney Brenner in the late 60s, significant progress has been
made to identify the complete cell lineage, map the genome
and also determine how higher level behavior emerges from
the connectivity and function of neural networks. Among the
many interesting behaviors exhibited by the nematode is its
ability to track regions with constant temperatures or chem-
ical concentrations. Hedgecock and Russell, in their seminal

work in 1975 [3] showed that C. Elegans migrates to regions
with temperature close to their cultivation temperature (Tc),
and deviating from a given isotherm by as little as 0.05 ◦C.
Since then multiple experiments based on genetic mutations
to alter individual cell responses and laser ablation studies
to selectively infer the cells’ role in controlling the overall
behavior has helped throw light on the overall structure of
the underlying networks that control these behaviors.

The contributions and organization of this paper is as
follows. We develop a spiking neural circuit to track contours
of physical environmental conditions such as temperature,
chemical concentration of molecules etc. Our circuit is
inspired by the biological neural networks underlying the
thermotaxis behavior of C. Elegans (section II). However,
unlike the C. Elegans network, the sensory neuron in our
network only uses the local variable (and not its deriva-
tive) to implement contour tracking, thereby minimizing its
complexity. We discuss the mathematical models for spiking
neurons and synapses that we employ in section III. The
algorithm we use for contour discovery and tracking is
explained in section IV. The neural micro-circuits necessary
for implementing this algorithm are developed in sections
V and VI. We employ spike timing based adaptation and
plasticity rules to implement gradient detection and tracking
in our network. We study the performance of the network
for various environmental profiles (section VIII) and propose
methods for temporal and spatial scaling (section IX). We
compare its performance with theoretically optimal foraging
strategies and demonstrate the energy efficiency of our
model based on the sparsity of spikes (section X).

II. C. Elegans THERMOTAXIS NETWORK

A nearly complete structure and connectivity of the
neural network of C. Elegans has been known for two
decades [5]. There are 302 neurons in the adult organism,
which are connected to each other through a network of
∼ 5000 chemical synapses and 600 gap junctions. However,
it is only recently that the functional connections in the
network have begun to be elucidated to explain the origin of
non-trivial behaviors such as thermotaxis from basic neural
networks.

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2079



Figure 1 shows a schematic of the neural network model
believed to modulate the thermotaxis behavior in the worm.
Temperature is sensed by AFD and AWC sensory neurons,
which send signals of opposite polarity to the interneuron
AIY. AIY synapses to interneurons AIZ and RIA and finally
to motor neuron RIM which is believed to control the
dynamics of locomotion of the worm to track isothermal
regions [7]. It is believed that the worm executes thermotaxis
by performing a biased random walk by switching between
periods of long forward movements called ‘runs’ and sudden
switches in directions called ‘pirouettes’. It is found that as
the worm approaches the desired temperature, the frequency
of pirouettes decreases and run length increases. The op-
posite is true when the worm deviates from desired tem-
peratures. Thus, a competition between these two strategies
biases the worm towards desirable environmental conditions.

Experimental studies based on imaging of Ca2+ dy-
namics of cells, femto-second laser ablation and genetic
mutations have been conducted to determine the cellular
basis for thermotactic behavior [8]. When the local sensed
temperature T is greater than the cultivation temperature Tc,
the AFD neuron is activated, which in turn inhibits AIY.
This suppresses the inactivation of AIZ neuron, causing the
worm to move to lower temperatures (cryophilic behavior).
On the other hand, when the local sensed temperature T is
lesser than the cultivation temperature Tc, the AWC neuron
stimulates AIY, promoting motion to warmer temperatures.

Fig. 1. Proposed model for thermotaxis network of C. Elegans, adapted
from [4]. AFD and AWC sense the local temperature, and send signals
of opposite polarity to the interneuron AIY which then propagates to
interneurons AIZ, RIA and RIB and the motor neuron RIM (not shown).

III. SPIKING NEURAL NETWORK IMPLEMENTATION

Though there have been mathematical models to describe
how thermotaxis arises due to the competitive behavior
between cryophilic and thermophilic tracking [9], there have
been no neural models that completely and quantitatively
explain such behaviors. This is mainly due to the fact that no
consistent picture exists for the cellular signaling schemes of

all individual neurons believed to participate in tracking. In
this paper, we look to the C. Elegans thermotaxis network for
inspiration to design the basic architecture of a neural circuit
for contour tracking. However, we have assumed that the
neurons in our network perform integrate and fire dynamics
and synaptic currents flow only in response to spikes, unlike
some of the C. Elegans neurons which are known to issue
plateau potentials [6]. Compared to the second generation ar-
tificial neural networks, spiking neural networks are believed
to be more computationally efficient as larger fan-out circuits
are possible and computations can be performed using spike
times as the only token of information. The communication
pathways in such networks are determined by the strengths
of synapses, and hence a big challenge in designing such
networks is to determine synaptic weights based on spike
timing alone. In this paper, we develop biologically inspired
models for synaptic plasticity to design various modules for
our network.

We employ the following adaptive exponential integrate
and fire (AEIF) model for modeling the dynamics of the
neurons, with the parameters chosen to mimic the Regular
Spiking (RS) neurons [10].

C
dV (t)

dt
= −gL(V (t)− EL) + gL∆T exp

(
V (t)− VT

∆T

)
− U(t) + Iapp(t) + Isyn(t) (1)

τw
dU(t)

dt
= a [V (t)− EL]− U(t) (2)

When V (t) ≥ 0, V (t) −→ Vr and U(t) −→ U(t) + b.

Synaptic currents due to a spike at time tf is given by

Isyn(t) = Is

[
exp

(
− t− t

f

τm

)
− exp

(
− t− t

f

τs

)]
h(t− tf )

(3)

The values of the parameters used are listed in Table I.

IV. THE DYNAMICS MODEL

Fig. 2. Block diagram for the bio-inspired neural circuit for contour
tracking. The model steers the worm to regions close to the set point Ts

by controlling the probability for random walk and deterministic turns.

We now describe the salient aspects of the model to
control locomotion for contour tracking by our artificial
software ‘worm’. If the worm is not near the desired set-
point (Ts), it should exhibit random exploratory motion. The
exploration should favor motion towards the directions in
which the current local temperature (T ) is more favorable
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(small values of |T − Ts|) and shy away from directions of
harsher temperature differences (large values of |T−Ts|). In
this phase, worm should move rapidly so that a large area is
quickly explored. On approaching the set-point, the tendency
to execute random motion should decrease to enable tracking
of the set-point isotherm. It is also desirable that the speed of
the worm depends on |T−Ts|. When |T−Ts| is large, larger
speeds allow quick exploration of the space, while slower
speeds are better near the isotherm to prevent overshooting
or high amplitude oscillations during tracking.

The tracking model is inspired by the operation of AFD
and AWC neurons of C. Elegans [8], [11]. However, unlike
two or more temperature sensors present in the thermotaxis
network of C. Elegans, our model employs one simple linear
temperature sensor neuron. The tracking model is as follows.
If the instantaneous temperature T is greater than the set-
point Ts, and if the worm is encountering a positive gradient
(dT/dx > 0), we should alter the direction of motion. This
is also true if the local temperature T is less than Ts, and the
worm is encountering a negative gradient. We assume that in
the former case, the worm turns clockwise and it turns anti-
clockwise when the latter condition is satisfied. The choice
of clockwise and anti-clockwise preference for turning is
completely arbitrary. Further, making these opposing choices
for turning instead of executing either clockwise or anti-
clockwise turning for both the above mentioned conditions
ensures that the worm does not go around in circles once
it is in the vicinity of Ts. We will show that this tracking
model employed in conjunction with random exploration can
enable the worm to quickly identify the isotherms on a plane
and to track it effectively.

In our model, the worm is continuously moving, and
hence, the sign of gradient of temperature along the direction
of worm movement is same as that of the temporal derivative
dT/dt where t stands for time. Hence, we will use a tem-
poral gradient detector instead of a spatial gradient detector
for implementing our model. To summarize, we require the
following basic blocks based on spiking neural networks to
build our model:

1) Comparators to check T > Ts or T < Ts
2) Gradient detectors to detect dT/dt ≷ 0
3) A mechanism to control speed of the worm
4) A mechanism to introduce randomized exploration

In the following sections we show how these blocks can be
built using neural circuits and subsequently combine them
to form a contour tracker.

V. MICRO-CIRCUIT FOR COMPARATOR

Fig. 3. Comparator neural circuit whose output spike frequency (at N2)
exhibits a linear dependence on ambient temperature T . N1 is the sensory
neuron, whose input current Iin1 is linearly proportional to T . Parameters
w and Ibias can be used to tune the response curve of the circuit.

We assume a simple model for the temperature sen-
sor neuron, whose input current depends linearly on the
local instantaneous temperature T . Based on the current-
spike frequency characteristics of the AEIF spiking neuron,
we assume the following temperature dependence, so that
the spike frequency of the sensory neuron varies between
∼ 120 Hz to ∼ 140 Hz for a ±0.05 ◦C variation around the
temperature set point, Ts.

Iin1 = αT + βT × (T − Ts) (4)

where αT = 600 pA and βT = 500 pA/K. For the sake
of explanation, we assume that the ‘worm’ is required to
track a certain temperature, but in general, it could seek and
track any other physical variable as long as the input sensor
neuron has a similar linear dependence on that variable.

Fig. 4. Spike Frequency response of the comparator circuit (measured at
N2) for different values of Ibias (and a fixed value of w = 205). The
threshold for detection can be tuned by varying the parameter Ibias.

Fig. 5. The slope of the spike frequency response curve of the comparator
circuit can be tuned by adjusting both the parameters Ibias and w.

The comparator consists of two neurons as shown in
Figure 3. The spike frequency of N2, determined by the
bias current Ibias and the weight w of synapse N1 → N2,
shows a ramp-like output response (Figure 4, 5). Further,
it is also possible to change the threshold for temperature
detection, as well as the slope of the response independent
of each other, by appropriately choosing the values for Ibias
and w. A complementary comparator (i.e., a network that
produces a proportional spike response for deviations of
local temperature below the set-point) can be realized by
making w negative and Ibias positive.
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VI. MICRO-CIRCUIT FOR GRADIENT DETECTOR

A. Design and working principle

The gradient detector consists of three neurons N4, N5

and N6 interacting through a network of four synapses with
weights w45, w46, w56, w66 (Figure 6). The input to the
network is an analog current, Iin at neuron N4, and N6 is
the output neuron. N6 spikes when the network detects a
positive gradient (w.r.t time) at the input current Iin. The
synapse w46 is chosen to be excitatory, while w45 and w56

are inhibitory. Signal propagation through N4 → N5 → N6

takes longer than through the direct path N4 → N6. Since
the currents in these paths have opposite signs, the effective
spike frequency of N6 should mimic a derivative operation.

Fig. 6. The neural micro-circuit for gradient detection. N6 spikes in
response to positive gradients in the input current Iin at N4. Synapses
w45 and w56 are inhibitory, while w46 is excitatory. The strength of w56

depends on the time of arrival of spikes at N5.

If Iin is constant for a sufficiently ‘long’ period of time,
it is expected that N6 should not spike. This can be achieved
effectively if the strength of at-least one of the synapses in
the network has a mechanism to adapt to the instantaneous
value of Iin. Our model assumes that synaptic strength w56

adapts according the magnitude of Iin.

We denote the value of w56 for which the spiking of
N6 just stops as w0. A small increase in w56 from this
value will cause the N6 to undergo periodic spiking. When
w56 = w0, there is an equilibrium between w46 injecting
positive current into N6 and w56 = w0 opposing it. A weight
adaptation rule that continuously pushes w56 towards w0 is

τa
dw56

dt
= w0 − w56 (5)

w0 is not a constant, but a monotonically decreasing
function of the input current. The above equation ensures
that when Iin is constant, w56 converges to w0, prohibiting
N6 from spiking. When Iin increases, the equilibrium is
disturbed such that spike rate of N4 is increased and spike
rate of N5 is decreased due to increase in inhibiting current
induced by w45. Thus, N6 sees an increase in the incoming
positive current through w46 and a decrease in inhibition
through w56. The net excitatory current coming into N6

thus increases, causing it to spike. N6 continues to spike
until the weight w56 converges (as per (5)) to the value of
w0 corresponding to the new Iin. This process of adaptation
is not instantaneous allowing for sufficient spiking at N6.

When Iin decreases, excitatory current to N6 through
w46 decreases. In addition, spiking of N5 increases which

increases inhibitory current through w56. Thus through both
w46 and w56, spiking of N6 is suppressed. w56 then in-
creases to reach the now less negative w0, always staying
below it, thus continuously suppressing spiking of N6.

B. Determining the parameters of the adaptation rule

To begin with, the weights w46 is chosen to be 200
while w45 is chosen to be −50; the initial value of w56

is immaterial, as the weight adaptation rules changes it
according to the spiking frequency of N5 (denoted by f5).
The chosen parameters in our design ensures that gradients
are detected when the input current (Iin) lies between
600 pA to 1100 pA. Figure 7 shows w0, the maximum (least
negative) value of weight w56 which results in no spiking
at the output neuron N6 for different values of Iin, as a
function of the spike rate f5 of neuron N5.

Fig. 7. The critical value w0 of strength of synapse w56 for which the
gradient detector stops responding as a function of the spike rate of N5.
The linear approximation ŵ0 is used to develop the adaptation rule for the
synapse w56 of the gradient detector circuit.

w0 has a non-linear dependence on f5, but to minimize
the complexity of implementation, we use the following
linear rule, given by

ŵ0 = cf5 + d (6)

Note that ŵ0 is not a least square approximation for the
w0 − f5 dependence, and is intentionally chosen such that
in the given operating range, ŵ0 < w0. The operating range
for the input current and the corresponding parameters for
ŵ0 are chosen such that the relative error of ŵ0 w.r.t w0 is
small. For any value of Iin, if ŵ0 > w0, then w56 would
converge to a value greater than the maximum value that
would suppress the spiking of N6, leading to unnecessary
spikes in the output neuron. If ŵ0 is significantly smaller
than w0, this would lead to loss of sensitivity of the gradient
detector. For obtaining reasonable spiking at N6, it would
therefore be necessary for Iin to counter-act the additional
inhibition by the overcompensated value of w56.

It is obvious that recurrent spiking for any constant
input current clearly violates the desired function of the
gradient detector. We have decided to limit the sensitivity
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of the gradient detector to 40 pA/s to ensure that there is
no recurrent spiking in the chosen operating range of Iin.
Combining equations 5 and 6, the adaptation rule becomes

dw56

dt
=

(
c

τa

)
f5 +

(d− w56)

τa
(7)

⇒ ∆w56 =

(
c

τa

)
f5∆t+

(d− w56)

τa
∆t (8)

The above relationship requires the knowledge of the arrival
rate of spikes in the recent past (to obtain f5). In order to
avoid this, and develop memoryless adaptation, we propose

∆w56 =

(
c

τa

)
δ(t− tN5) +

(d− w56)

τa
∆t (9)

where tN5 denotes the instants where neuron N5 has spiked.

The first term represents an increment in w56 triggered
by every spike at N5. The second term represents the natural
tendency of the synapse to push its weight towards the value
d. This modification allows us to adapt w56 based on spike
occurrence at N5 and current value of w56. These are local
variables for w56 and do not require any memory of the past
[13]. It can be observed from Figure 8 that the proposed
model performs the desired gradient detection operation.

Fig. 8. Output of the gradient detector micro-circuit, showing the input
current (top panel), weight adaptation (middle) and the spike response
(bottom). N6 spikes only when there is positive gradient in Iin and it
stops spiking if and only if w56 < w0. Notice that w56 continuously
moves towards the steady state value ŵ0.

C. Customization, control and tradeoffs

We now discuss parameters in the network that can be
used to customize key descriptors of the gradient detector
such as sensitivity, noise tolerance and response time.

1) τa: This variable determines the rate at which adap-
tation of w56 occurs. Small values of τa lead to w56

reaching its new equilibrium before the neuron N6 spikes
a sufficient number of times. This would mean that N6

spikes sufficiently only if Iin changes rapidly, reducing the
sensitivity of the gradient detector. Such a circuit would
also be susceptible to noise since large gradients are being
detected in small time intervals. Large values of τa would
result in sustained spikes in the output neuron even after the
gradient at the input vanishes.

2) w46: w46 controls the amplification of the difference
between inputs from N4 and N5 into N6. This is because
of the fact that |w0| increases with w46. A decrease in w46

would lead to loss in sensitivity and will increase response
time. On the other hand, a large value would result in quick
response (which worsens noise tolerance) and also lead to
sustained spikes after the gradient has disappeared.

3) w66: We add a self-inhibitory synapse w66 for the
output neuron N6 to selectively reduce the spike frequency at
high gradients. This is necessary to avoid the worm moving
in circles in regions of high gradients.

VII. NEURAL CIRCUIT FOR CONTOUR TRACKING

In this section, we proceed to combine the compara-
tor and gradient detector circuits to make a non-favorable
direction detector. We introduce a mechanism for random
exploration and speed control model with their implementa-
tions in conjunction with non-favorable direction detector.
We will show that this circuit is capable of exploring a
region with varying temperatures and detect and track a
desired set temperature. The complete combined circuit and
the values of the bias currents and synaptic strengths used
in the simulations is shown in Figure 9 and Table II.

Fig. 9. Schematic of the neural circuit for contour tracking. N1 is a
temperature sensitive input neuron. N1 −N3 is a positive comparator, and
N7−N8−N9 is a gradient detector. Similarly, N1−N2 is a complementary
comparator, and N4 −N5 −N6 is a gradient detector. N6 and N9 control
the deterministic turns, while N10 controls the random exploration.

A. Non-favorable direction detection

N1 is a linear temperature sensor neuron, whose tempera-
ture dependent input current is given according to equation 4,
where αT = 600 pA and βT = 500 pA/K. We have assumed
Ts = 20 ◦C. By tuning the parameters of the model, it is
possible to track other temperatures as shown in Figure 12.
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TABLE I. PARAMETERS USED IN SIMULATION

Parameter Value Parameter Value
C 200 pF Vr −58 mV

gL 10 ms b 0 pA

EL −70 mV τm, τv 15 ms

∆T 2 mV τs 3.75 ms

VT −50 mV c 7.0614 Hz−1

τw 30 ms d −1145.176

a 2 nS τa 3 s

TABLE II. VALUES OF SYNAPTIC STRENGTHS AND BIAS CURRENTS
FOR THE CIRCUIT TO TRACK Ts = 20 ◦C

Parameter Value Parameter Value Parameter Value
w12 -205 w13 207 Ibias2 830.5 pA

w24 120 w37 100 Ibias3 −396 pA

w45 -50 w78 -50 Ibias4 600 pA

w46 200 w79 200 Ibias5 800 pA

w6,10 -1000 w9,10 -1000 Ibias7 600 pA

w2,10 6.089 w3,10 6.755 Ibias8 800 pA

w66, w99 -200 w10,10 -800 Ibias10 205 pA

The network N1 − N3 is a positive comparator, that
spikes only if T > Ts. Based on the comparator architecture
described in section V, the synapse N1 → N3 is excitatory
and N3 receives a negative bias current.

Neurons N7, N8 and N9 together form a gradient de-
tector. N7 receives a constant bias current and N3 feeds
this gradient detector through the synapse N3 → N7. For
T < Ts, N3 does not spike and hence, N7 does not receive
any input from N3. Thus, there is no gradient at input current
to N7 and consequently, N9 cannot spike. For T > Ts,
response of N3 linearly increases with sensed temperature
(Figures 4, 5). Thus increase in T results in a gradient
at input current to N7, which is detected by the gradient
detector. Therefore, spiking at N9 is indicative of T > Ts
and dT/dt > 0. As per the motion model, at every spike of
N9, the worm turns by 7.5◦ in anticlockwise direction.

In an exactly parallel fashion, the network N1 − N3 is
a complementary comparator, that spikes only if T < Ts.
Synapse N1 → N2 is inhibitory and N2 receives a positive
bias current. Neurons N4, N5 and N6 together form another
gradient detector. N2 feeds this gradient detector through
the synapse N2 → N4 and by similar logic, spiking at N6

indicates T < Ts and dT/dt < 0. At every spike of N6, the
worm turns by 7.5◦ in clockwise direction.

B. Random exploration model and implementation

We introduce neuron N10 to actuate the random ex-
ploratory motion in the plane by the worm. We achieve this
by stipulating that at every spike of N10, the worm turns by
a random angle uniformly distributed over −π/2 to +π/2.
As described in Section IV, it is necessary that this neuron
spikes only when the worm is not near Ts. To ensure this,
the bias current into N10 is chosen such that it alone is not
sufficient to elicit any spiking in N10. The two comparator
circuits are designed such that at least one of the neurons N2

and N3 spike heavily if the worm is not near Ts. Synapses
N2 → N10 and N3 → N10 inject excitatory currents, so
that N10 spikes when worm is not within a band around the
cultivation temperature Ts.

During random exploration, it is desirable to have suf-
ficient run lengths. This can be possible if the spiking of
N10 is made sparse. This is ensured by two means. Firstly,
synapses N2 → N10 and N3 → N10 are given small
weights. Thus the run length is a slowly decreasing function
of |T − Ts|. Secondly, a self-inhibiting loop is added at
N10 to further increase the run length. If the worm is
facing towards a non-favorable direction, it is most important
to turn away from such directions. Thus, in such cases
randomness should be suppressed. Since spiking at either
N6 or N9 is indicative of non-favorable directions, inhibitory
synapses N6 → N10 and N9 → N10 are added.

C. Speed control

As described in Section IV, the worm should move faster
if it is away from Ts. To achieve this, we stipulate that for
every spike of either N2 or N3, the magnitude of the speed is
incremented by a constant amount (1.3 mm/sec). In absence
of any spike at either N2 or N3, the speed exponentially
decays to 1 mm/sec with a time constant τv .

To summarize, our model consists of 10 neurons. It has
one linear temperature sensor, two neurons that together
influence the speed of the worm and three neurons that
control turning. Two of the turning control neurons actuate
deterministic clockwise and anticlockwise turning, while the
third one actuates random turning.

VIII. SIMULATION RESULTS

Figure 10 shows a typical motion profile executed by
our worm for a set-point of Ts = 20 ◦C. Initially, the worm
executes random exploratory motion till it comes to the
vicinity of Ts and then tracks the isotherm, with standard
deviation around the isotherm maintained at ∼ 0.05 ◦C. The
spike patterns in the network during random motion and
tracking is shown in Figure 11. By altering the parameters
of comparators, it is also possible to change the set-point,
and make the model track other temperatures. Figure 12
(Trajectory 1) shows the profile of a worm launched from
the same initial point as in Figure 10, but with Ts = 18.6 ◦C.
Trajectory 2 in figure 12 shows that the worm is able to
identify and track the isotherm even if the launch point is at
a temperature that is higher than the set-point of Ts = 20 ◦C.

We also show that our model performs exploration and
tracking exceptionally well even in noisy environments.
Figure 13 show the exploration trajectory traced by the worm
launched from the same point in the plane, but with noise
added to the background temperature profile.

IX. SCALING

In this section, we discuss the principles for scaling our
model’s tracking behavior to operate in different spatial or
temporal ranges. For the circuit to function as desired, it is
necessary that the input currents to the gradient detectors, i.e
input to N4 (Iin4) and N7 (Iin7) remain within the operating
range of the gradient detectors and the time derivatives of
these currents be maintained. Since comparators N1 − N2

and N1−N3 have ramp responses (refer Figure 5), the input
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Fig. 10. Trajectory of the worm which starts at a low (undetectable)
gradient region and reaches and tracks the set-point temperature (Ts =
20 ◦C) through random motion.

Fig. 11. Spike patterns in the network during random exploration (left)
and tracking (right). N6 and N9 spike in response to negative and positive
temperature gradients. Their spikes actuate deterministic turns causing
isothermal tracking. N10 spikes when they are quiet, prompting random
exploration. Also, when away from Ts heavy spiking at comparator neurons
causes the average speed to increase thus leading to faster coverage of the
space. (Temp is in ◦C, Neuron voltages in mV and Vel in mm/s).

currents to the gradient detectors are linear functions of Iin1

in their respective operating ranges. Hence,

dIin4

dt
=

d

dt
(Ibias4 + I24) =

dI24

dt
∝ dIin1

dt
(10)

If we denote the spatial variable in the direction of
movement of the worm by r, then Equation 4 implies

dIin1

dt
=

(
dIin1

dT

)(
dT

dr

)(
dr

dt

)
= βT

dT

dr
v (11)

Thus, for a given spatial (dT/dx) or temporal (v) scaling,
βT can be adjusted so that dIin4/dt (and dIin7/dt) remain
same. However, βT should not be very high to maintain the
operating range of gradient detectors. The weights w2,10 and

Fig. 12. Trajectory 1 shows the worm tracking a new temperature as
a result of changing the Ts parameter to 18.6 ◦C in Equation (4). In
Trajectory 2, the worm starts at a temperature higher than Ts = 20 ◦C.

Fig. 13. Performance of the worm in presence of additive salt and
pepper noise (sprinkled with a density of 100/64 cm2). The noise has
high harmonic amplitude in the frequency range of 3 cm−1 to 10 cm−1

and mean square amplitude of 0.1558 ◦C.

w3,10 must be adjusted for the new values of βT , so that N10

spikes only outside a required band of temperatures.

X. PERFORMANCE EVALUATION

To quantify the foraging ability of our model, we mea-
sured the average time taken by the worm to reach the
isotherm (Ts = 20 ◦C) over repeated experiments, when
launched from the same location. Of the 200 simulations
performed, our model identified and tracked the isotherm
in ∼ 63% cases within 150 s. Further, the time to locate
the isotherm was 40.70 s±27.83 s. Once the worm settles
into the tracking mode, its path lies on a band around the
isotherm 0.03− 0.09 ◦C wide, with an average deviation of
0.05 ◦C.

It is well-known that the optimal strategy to detect
randomly distributed targets is to make the flight lengths
between random turns follow the heavy-tailed Lévy dis-
tribution [12]. We simulated this strategy by drawing the
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run-lengths l from a truncated heavy tailed distribution
(whose p.d.f is P (l) ∼ l−2 in the interval of [s, 20s] where
s = 0.51 mm is the empirically determined minimum run
length of the neural model). The isotherm was reached
in only ∼ 39% of the experiments and the average time
for detection increased to 51.08 s ±36.16 s with the same
foraging velocity as the neural model. Success criteria for
foraging is set as the flight path encountering a band of
±0.05 ◦C around Ts.

Fig. 14. Unlike our neural model, Lévy foraging fails to use local
information to steer the worm away from unfavorable directions. A typical
Lévy flight track launched from the same location as before, which failed
to detect the set point (Ts = 20 ◦C) within 150 s is shown.

It is clear that the network we developed for our model
outperforms the Lévy flight strategy, both in terms of the
mean time for success and its reliability measured in terms of
its variance. Unlike our model, the Lévy flight strategy does
not steer the worm away from unfavorable directions during
exploration, making its overall performance inferior to our
model (Figure 14). This clearly demonstrates that the energy
expended by the worm in doing complex computations
is actually useful as it performs better than an optimal
memoryless foraging strategy.

Further, we monitored the firing rates of the neurons in
our model, as the energy consumed by a hardware imple-
mentation of this circuit will depend on the number of spikes
needed to make decisions. The average firing rate (calculated
over 150 s duration) over the whole population of neurons
is 73.89 Hz. Neurons 4, 5, 7 and 8 spike at ∼ 130 Hz while
other neurons spike rarely. In particular, the neurons 6, 9,
10 spike at 2 Hz on average. The histogram of local spiking
frequency calculated over a 500 ms window peaks sharply
near 0 Hz, indicating that the neurons spike sparsely. Local
spiking frequencies rarely go above 150 Hz and never above
260 Hz, ensuring that our model is biologically plausible.

XI. CONCLUSION

In this paper, we have developed a spiking neural circuit
inspired by the thermotaxis network of the nematode C.
Elegans. Our circuit, consisting of only 10 spiking neurons
and one simple linear, local temperature sensor neuron, is
able to explore, identify and track a programmable set-
temperature to a high degree of accuracy.

We have shown that our model outperforms the theoret-
ically optimal memoryless foraging strategy based on the
Lévy distribution by ∼ 60% in terms of the probability
for finding the isotherm. Further, once the isotherm is
determined, our model tracks the set-point with an accuracy
of ∼ 0.05 ◦C, which is similar to the accuracy seen in nature
[3]. We have also demonstrated that that the model is robust
in the presence of noise.

Our model is general enough to be modified to track
other environmental variables such as chemical molecules,
radiation, etc by choosing appropriate sensor neurons. By
turning off the negative gradient detector, we can modify this
model to seek the source of diffusive stimulants. With simple
modifications, our model can also be used for navigation
and obstacle avoidance. We have also shown that by appro-
priately modifying the sensitivity of the sensor neuron, our
model can perform tracking in various spatial and temporal
scales. The neurons in our network spike at sparse biological
rates (∼ 100 Hz), showing that complex computations can
be performed in an energy-efficient manner.
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