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COMPRESSED SENSING - INTRODUCTION STANDARD COMPRESSED SENSING OUR RESULT

e Goal: estimate a signal z* € R™ from a linear system y = Ax™ 4 7.

e “Natural” represented as k-sparsity in well-chosen basis. We replace sparsity with a more powerful notion: appearing in the
e Applications to MRIs, IR imaging, oil exploration, etc. e Typical target: find  with range of a generator G : R — R". The target becomes:

o Let A € R™”". How many measurements m are needed? Naively:
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e But not all z are plausible/natural: . o . .
e Possible when A is iid. Gaussian with m = O(klogn) We show this is possible for random Gaussian A and
rows [Candes-Romber-Tao ‘06]. Can be efficiently computed us-
ing LASSO. e m = O(kdlogn) for depth-d ReLU-based neural networks.

e m ~ O(klog(L/d)) for general L-Lipschitz functions G, with addi-

e But is sparsity really the right structure? Or can we study the mil- |
tive error o.

lions of MRIs we take every year to learn a better structure?

Well-trained GAN or VAE generative models can represent images with
much smaller £ than sparse representations.

OUR APPROACH

KEY PROPERTY: A NEW EIGENVALUE CONDITION

o A satisfies the normal REC, if for all approximately sparse vectors
z, [[Azllz > y]lz]l2.

5> MB 36 MB

loss(z) = ||AG(z) — |5

Get gradients of loss with re-
spect to z by backpropagation.

o Ideally: m = (information in signal) / (new info. per measurement)

— Signal is “natural” = information in image is small.

M “incoh Z O f " Ootimize wit » iterativelv us- o [t satisfies our “Set-Restricted Eigenvalue Condition” (S5-REC) for
— Measurements “incoherent” = most info new. ’ _ P . yu S C R” if, for all 1. 22 € S we have

| X ing gradient descent to get 2
e Three questions: 74 -~ |A(x1 — x2)||2 > 7|1 — 2|2 — 0
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e Finally, output z = G(%)
Backprop

1. How to define “natural”?

L X | |

2. F(.)r that definition, how to choose? Az Highly nonconvex, so no proof of convergence. But approximate

3. Given measurements, what algorithm for recovery? minimization implies approximate recovery, and we can check the final
error.

e With enough measurements, A satisties the S-REC for S =
range((G), which implies recovery.

QUALITATIVE RESULTS QUANTITATIVE RESULTS
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e For fixed G, error saturates. Larger m should use higher capacity
model with larger k.
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e Total Error = Representation + Measurement + Optimization.
We find that (a) Optimization error ~ 0, and (b) Representation
error > Measurement error.
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