
COMPRESSED SENSING USING GENERATIVE MODELS
ASHISH BORA, AJIL JALAL, ERIC PRICE, ALEX DIMAKIS

COMPRESSED SENSING - INTRODUCTION
• Goal: estimate a signal x∗ ∈ Rn from a linear system y = Ax∗ + η.

• Applications to MRIs, IR imaging, oil exploration, etc.

• Let A ∈ Rm×n. How many measurements m are needed? Naively:
m ≥ n or else underdetermined; multiple x possible.

• But not all x are plausible/natural:

5 MB 36 MB

• Ideally: m = (information in signal) / (new info. per measurement)

– Signal is “natural” =⇒ information in image is small.
– Measurements “incoherent” =⇒ most info new.

• Three questions:
1. How to define “natural”?
2. For that definition, how to choose A?
3. Given measurements, what algorithm for recovery?

STANDARD COMPRESSED SENSING
• “Natural” represented as k-sparsity in well-chosen basis.

• Typical target: find x̂ with

‖x̂− x∗‖2 . min
k-sparse x

‖x− x∗‖2 + ‖η‖2

• Possible when A is i.i.d. Gaussian with m = O(k log n)
rows [Candès-Romber-Tao ’06]. Can be efficiently computed us-
ing LASSO.

• But is sparsity really the right structure? Or can we study the mil-
lions of MRIs we take every year to learn a better structure?

OUR RESULT
We replace sparsity with a more powerful notion: appearing in the

range of a generator G : Rk → Rn. The target becomes:

‖x̂− x∗‖2 . min
x=G(z)

‖x− x∗‖2 + ‖η‖2.

We show this is possible for random Gaussian A and

• m = O(kd log n) for depth-d ReLU-based neural networks.

• m ≈ O(k log(L/δ)) for general L-Lipschitz functions G, with addi-
tive error δ.

Well-trained GAN or VAE generative models can represent images with
much smaller k than sparse representations.OUR APPROACH
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• loss(z) = ‖AG(z)− y‖22
• Get gradients of loss with re-

spect to z by backpropagation.

• Optimize wrt z iteratively us-
ing gradient descent to get ẑ

• Finally, output x̂ = G(ẑ)

Highly nonconvex, so no proof of convergence. But approximate
minimization implies approximate recovery, and we can check the final
error.

KEY PROPERTY: A NEW EIGENVALUE CONDITION
• A satisfies the normal REC, if for all approximately sparse vectors
x, ‖Ax‖2 ≥ γ‖x‖2.

• It satisfies our “Set-Restricted Eigenvalue Condition” (S-REC) for
S ⊆ Rn if, for all x1, x2 ∈ S we have

‖A(x1 − x2)‖2 ≥ γ‖x1 − x2‖2 − δ.

• With enough measurements, A satisfies the S-REC for S =
range(G), which implies recovery.

QUALITATIVE RESULTS
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Super-resolution:
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Inpainting:
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QUANTITATIVE RESULTS

MNIST with VAE
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celebA with GAN
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• For fixed G, error saturates. Larger m should use higher capacity
model with larger k.

• Total Error = Representation + Measurement + Optimization.
We find that (a) Optimization error ≈ 0, and (b) Representation
error�Measurement error.


