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Abstract—We propose an iterative and distributed Markov
Chain Monte Carlo scheme for estimation of effective edge con-
ductances in a graph. A sample complexity analysis is provided.
The theoretical guarantees on the performance of the proposed
algorithm are weak compared to those of existing algorithms.
But numerical experiments suggest that the algorithm might
still be effective while offering the advantages of low per iterate
computation and memory requirements.

I. INTRODUCTION

Given a graph G = (V,E), with node set V and edge set
E, the effective resistance between two nodes i and j is the
potential difference that results when a unit current is injected
at i and extracted at j. Effective conductance is the inverse of
the effective resistance.

Effective resistance has been used as a robust measure of
distance in social network graphs ([1], [2]) because it is
less sensitive to edge or node insertions and deletions than
the usual shortest path distance on such graphs. The sum of
effective resistances across all pairs has been used as a measure
of network robustness [3]. This sum also equals a network
criticality parameter, defined as a betweenness1 of some node
in the graph, normalized by that node’s degree [4]. Effective
resistances are also used in graph sparsification [5]. The
procedure for sparsification is to sample, with replacement, an
edge with probability in proportion to its effective resistance
and include it in the subgraph with an appropriate weight
(to ensure unbiasedness of the edge weights in the sparsified
subgraph). If an edge is sampled multiple times, its weights
are summed.

An elegant method to estimate effective resistances was
proposed by [5]. It is well-known that the nodes of the graph
can be embedded in Euclidean s pace of dimension |E| so
that the resulting pair-wise distances encode the effective
resistances (see p. 1921 of [5]). The embedding depends on the
edge-node adjacency matrix and the Laplacian of the graph.

1This is called random walk betweenness of a node j: the sum over all
pairs of nodes i and k of the expected number of times j is visited in a
simple random walk starting at i and ending at k. The betweenness of a node
j normalized by that node’s degree turns out to be independent of the chosen
node j and can therefore be viewed as a graph property.

A low dimensional random projection of these vectors, one
that approximately preserves pair-wise distances to within a
factor (1±ǫ) with high probability, is then identified. This was
done in the context of cut-preserving and spectrum-preserving
graph sparsification, and high probability guarantees on the
approximate pair-wise distances suffice for high probability
guarantees on the approximations of cuts or the spectrum. The
main drawback with this approach is that it is centralized – the
low dimensional projection is computed based on information
about the entire graph.

Our goal in this paper is to propose effective conductance
and effective resistance estimation algorithms based on ran-
dom walks on the graph. A (simple) random walk on the
graph picks, from the current position, one of the neighbors
with equal probability. Our idea is very simple. The probability
that this random walk starting at node i visits node j before
returning to node i equals the effective conductance of (i, j)
normalized by the degree of node i. We will estimate the
conductance via the number of node i to node i paths that
contain node j in a long walk. Such algorithms are local – the
next step of the walk depends only on the local neighborhood
at the current node. They take fewer computations per step, use
lesser memory, and are often amenable to parallel implemen-
tation. Incremental as these algorithms are, their performances
improve with the number of iterations, and one does not have
to select or decide the accuracy parameter in advance. They are
also amenable to adaptation and find application in situations
where either the graph is evolving or information on the graph
becomes available only in a streaming fashion.

We will focus on estimation of effective conductances and
effective resistances of only the edges of the graph. But the
extension to other pairs of nodes is straightforward, and we
will indicate why in the final section. We will further assume
that the given graph is finite, undirected, unweighted, and the
associated Markov chain is aperiodic. Extensions to weighted
graphs are straightforward and will not be discussed here.

The current theoretical guarantee on the number of com-
putations for probably approximately correct estimation of
effective resistances, those that we report in this paper, are
admittedly inferior to the results of [5]. But simulation results
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provide some evidence that the algorithm might yet be effec-
tive while offering the advantages of parallelizability and low
per iterate computation and memory requirements.

A. Basic definitions and notations

Let G = (V,E) be an undirected, unweighted, connected,
finite graph. Let m = |E| and n = |V |. Define ∂i as the
neighborhood of node i, i.e., ∂i = {j|(i, j) ∈ E}. Let di = |∂i|
be the degree of node i ∈ V . Let dmax = maxi∈V di and
dmin = mini∈V di be the maximum and minimum degrees,
respectively. For a pair of nodes i and j, let dij := min{di, dj}
and Dij := max{di, dj}.

Consider the discrete-time Markov chain associated with
the random walk on the graph: from the current position, say
node i, the walk moves to one of the neighbors of node i with
equal probability. Denote this Markov chain by (Xt, t ≥ 1),
where Xt is the state of the Markov chain (location of the
walk) at time t. X1 is the initial state. Let L(Xt) denote the
distribution of Xt. We shall assume that the Markov chain is
irreducible and aperiodic, and so it has a unique stationary
distribution which we shall denote by π. It is easy to see that
the Markov chain is reversible, and from the detailed balance
equation, we have πi = di/(2m), i ∈ V.

The time taken by the Markov chain to get “close” to the
stationary distribution is the mixing time of the Markov chain.
To define this precisely, let us consider the total variational
distance between two distributions P and Q on the alphabet
V :

dTV (P,Q) := sup
A⊆V

|P (A)−Q(A)|.

The mixing time tmix of this Markov chain is defined as

tmix := min

{
t ≥ 1 | max

i∈V
dTV (L(Xt|X1 = i), π) ≤ 1

4

}
.

Let us define davg =
∑

i∈V diπi =
∑

i∈V d2i /2m to be
the average degree with respect to the stationary measure. For
every (i, j) ∈ E, let Gij be the effective conductance between
the nodes i ∈ V and j ∈ V and define effective resistance to be
Rij := 1/Gij . Let us define pij to be the probability that the
random walk starting at node i visits node j before returning to
node i. The key fact that underlies our conductance estimation
algorithm is that

pij = Gij/di. (1)

See Prop. 2.3 and Th. 4.1 of [6] for a proof of (1).

B. Related work

Reference [5] describes a procedure that outputs approxi-
mate effective edge resistances. The main idea of their work
is based on the observation that the effective resistance can be
computed as follows. Each node is associated with a suitable
vector in R

m. This vector depends on the edge-node adjacency
matrix, the weights of the edges, and the associated Laplacian
of the graph. The effective resistance between two nodes is
then the squared distance between the two associated vectors
in R

m. They then use the Johnson-Lindenstrauss lemma [7]

to project these vectors on a low dimensional space while
approximately preserving distances. The projected vectors are
approximated efficiently using a linear solver.

For any ǫ > 0, their algorithm outputs effective resistances
to within a factor (1±ǫ) with probability atleast 1−1/n. Their
algorithm requires Õ(m/ǫ2) time; the Õ(·) notation ignores
poly-logarithmic factors.

II. THE CONDUCTANCE ESTIMATION ALGORITHM AND ITS

PERFORMANCE

For any two nodes i, j ∈ V , as indicated in (1), the proba-
bility pij that a simple random walk starting at node i visits
node j before returning to node i is given by pij = Gij/di.
This suggests a natural Monte Carlo strategy to estimate Gij

by counting the number of visits to node j before returning
to node i.

Algorithm : VisitBeforeReturn

1) Input T , G = (V,E).
2) For each i ∈ V , initialize Ni = 0.
3) For each (i, j) ∈ E, initialize p̂ij = p̃ij = 0.
4) Sample initial node X1 from the stationary distribution

π.
5) For t = 1 to T ,

Let i = Xt

a) For each j in ∂i:

(i) p̂ij ← (p̂ijNi + p̃ij)/(Ni + 1)

(ii) p̃ij ← 0

(iii) p̃ji ← 1

b) Ni ← Ni + 1
c) Jump to a neighbor of the current node as identified

by the walk.

6) For every (i, j) ∈ E, output

Ĝij = max

(
1,

di
2
p̂ij +

dj
2
p̂ji

)
.

Interpretation of the variables and the logic behind the above
algorithm are as follows.

1) p̃ij denotes the success or failure of visiting node j in
an instance of a return path from node i to node i of
the random walk.

2) Ni is the number of times node i was visited.
3) p̂ij , which is just the average of p̃ij , is a running estimate

of pij .
4) In the long run, every visit to node i marks the end of

a return path. Thus, on visiting node i, we can update
p̂ij using p̃ij .

5) In the long run, we would have visited all nodes at least
once (with probability 1 because the chain is finite and
irreducible). Fix an arbitrary node j (a neighbor of node
i). A visit to node i at time t is a part of a cycle that
originated at node j prior to time t and a subsequent
return to node j after time t (with probability 1, because
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of positive recurrence). Thus a visit to node i can be used
to update p̃ji.

6) Since, Gij = dipij = djpji = (di/2)pij + (dj/2)pji,
and since Gij ≥ 1, we may estimate Ĝij as in step 6 of
the algorithm.

The theoretical guarantee we have been able to show for
the above algorithm is the following.

Theorem 1 (Performance of VisitBeforeReturn): Fix an
edge (i, j) ∈ E. For any 0 < ǫ < d2ij/(4m) and 0 < δ < 1/2,

T = Õ

(
Dij ·max{m,Dijtmix} ·

1

ǫ2
log

1

δ

)

steps suffice to ensure that the output Ĝij of the algorithm
VisitBeforeReturn satisfies

P(|Ĝij −Gij | ≥ ǫ) ≤ δ.

If the algorithm is run for T steps, it requires O(davgT )
computation steps on the average (worst case O(dmaxT )
computations), and uses O(m log T ) space.

For definitions, see Section I-A. See Appendix A for a proof.

We now highlight the positive aspects and the limitations
of our algorithm.

One can turn our algorithm for estimating effective con-
ductances into one for estimating effective resistances with
relative error guarantees. It is these, estimates of effective
resistances with relative error guarantees, that are used for
graph sparsification in [5]. Let R̂ij = 1/Ĝij . Then we have
the following for the relative error on the effective resistances:

P

(
|R̂ij −Rij |

Rij
≥ ǫ

)
= P

(∣∣∣∣∣
R̂ij

Rij
− 1

∣∣∣∣∣ ≥ ǫ

)

= P

(∣∣∣∣∣
Gij

Ĝij

− 1

∣∣∣∣∣ ≥ ǫ

)

= P(|Gij − Ĝij | ≥ ǫĜij)

≤ P(|Ĝij −Gij | ≥ ǫ),

where the last inequality follows because Ĝij ≥ 1. This
implies that the T steps, as specified in Theorem 1, are
sufficient to ensure that the relative error on the effective
resistance exceeds ǫ with probability at most δ.

By applying the union bound over edges, we also get that
our algorithm takes

T = Õ

(
dmax ·max{m, dmaxtmix} ·

1

ǫ2
log

1

δ

)

steps to ensure that

P

(
max

(i,j)∈E
|Ĝij −Gij | ≥ ǫ

)
≤ δ.

Let us now discuss the limitations. Assume δ = 1/4.
One of the hypotheses of the theorem is the very restrictive
assumption of ǫ < d2ij/(4m). This assumption arises because
our algorithm is based on concentration of the number of

returns to a node (say i), and this is available only if πi is
sufficiently large. A consequence of this condition on ǫ is that
the running time is at least O(m3). One might as well invert
the Laplacian matrix and compute the resistances exactly. In
contrast to the theoretical guarantee on our algorithm, the
algorithm of [5] requires only Õ(m/ǫ2) steps.

Suppose that the graph is dense so that dmin = O(
√
m).

This is the situation when the problem of graph sparsification
is most relevant. The assumption on ǫ now allows ǫ to be
a small constant. But the number of steps for a theoretical
guarantee on our algorithm is still too large: Õ(m3/2/ǫ2).

If dmax and tmix are Õ(1), and if one can remove the
restriction ǫ < d2ij/(2m), then we would have an Õ(m/ǫ2)
MCMC algorithm to ensure that

P

(
max

(i,j)∈E
|Ĝij −Gij | ≥ ǫ

)
≤ δ.

It would then be comparable with the algorithm of [5] with
the advantage of decentralization, etc., that come with random
walk algorithms. Examples of graphs that have dmax and tmix

to be Õ(1) are expanders such as Erdős-Rényi graphs G(n, p)
with p = logn/n or p = c/n, with G taken to be the giant
component.

The question of whether the stringent restriction on ǫ can
be removed is left as an open question. In the next section,
we present some promising simulation results that highlight
the performance of the MCMC approach.

Our algorithm suggests the following approach for graph
sparsification. Given an ǫ > 0, for an edge (i, j), if ǫ satisfies
the condition with respect to i or j, then delete or keep the
edge accordingly to whether the estimate of the conductance
is high or low, respectively. Our algorithm provides a reliable
estimate of the conductance of such edges. If ǫ is small with
respect to πi and πj , then simply keep edge (i, j). Theorem
1 does not provide a guarantee on the performance of our
algorithm, but since Gij = 2mπipij is likely to be low
anyway (because πi is), keep the edge. The performance of
this MCMC-based sparsification needs further study.

III. SIMULATION EXPERIMENTS

A. Convergence

To test the performance and the convergence of the algo-
rithm, simulation experiments were performed as follows.

Given a graph G, it is known [5] that the effective conduc-
tance between any two nodes i, j ∈ V is given by

Gij =
(
(χi − χj)

tL+(χi − χj)
)−1

, (2)

where χi is the i-th standard unit vector, and L+ is the
pseudoinverse of the Laplacian of the graph. The Laplacian
L is given by L = D −A, where A is the adjacency matrix,
i.e., aij = 1 if (i, j) ∈ E and 0 otherwise and D is the
diagonal matrix of degrees D = diag(d1, d2, . . . , dn). Exact
computation of (2) is expensive, but we do this on sample
graphs for evaluation of our algorithm.

Let us denote by Ĝ(t), the conductance estimate vector at
the tth step of the random walk. The estimates were compared
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to the true conductances as follows: the L1-norm of the
difference normalized by the number of edges,

ǫ(t) =
1

m

∑

(i,j)∈E

∣∣∣Ĝij(t)−Gij

∣∣∣ , (3)

was computed and plotted versus time t to demonstrate con-
vergence.

We created three example graphs to test the convergence
properties of our algorithm. These are described below.
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Fig. 2. An expanded version of Fig. 1.

Example 1: A dense Erdős-Rényi graph: A random Erdős-
Rényi graph was created using the random_graph subrou-
tine from [8] with p = 0.5. The number of nodes n was 100.
Connectedness of the graph was ensured before simulation.

Example 2: A collaboration network: This is a large graph
from the Stanford Network Analysis Platform [9] and is a com-
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ponent of the collaboration network of researchers working on
General Relativity and Quantum Cosmology, and is derived
from the e-print Arxiv GR-QC. Two individuals are neighbors
on the graph if they coauthored a paper. The graph is based
on papers in the period from January 1993 to April 2003 (124
months). Additionally, the graph was pre-processed to assign a
weight of 1 for every edge. The largest connected component
was then chosen. The resulting graph had n = 4158 nodes and
m = 13425 edges. The degree distribution was not uniform.
There were 3422 nodes with degree 1, but only 414 nodes
with degree 2, 155 nodes with degree 3, 47 nodes with degree
4, 50 nodes with degree 5, and so on.

Example 3: An expander with O(log n) average degree: A
random Erdős-Rényi graph G(n, p) with p = log(n)/n was
generated and G was taken to be the giant component. We used
the random_graph subroutine once again from [8] with n =
4000 and p = 50/4000. It is known that G is an expander with
high probability.

The number of steps of the random walk T was set to
1, 000, 000. In Figure 1 we plot ǫ(t) as a function of t for
Example 1. In Figure 2, we blow up the latter part and see
that ǫ(t) continues to decrease with time, albeit slowly. The
behavior is similar for the other two graphs.

From Theorem 1, if we can ignore the condition on ǫ,
T = Õ(1/ǫ2) would suffice for approximating edge conduc-
tances on a fixed graph. We therefore anticipate that the error
ǫ is of the order 1/

√
T . A closer look suggests the following.

If tmix and dmax are Õ(1), and we can ignore the condition
on ǫ, then T = Õ(mdmax/ǫ

2) steps suffice, which suggests
ǫ(t) ≈

√
mdmax/t. A plot of ǫ(t)

√
t/
√
mdmax versus t

should roughly be a constant. This is corroborated in Figure
3. We used davg instead of dmax in Figure 3 because the plots
for the three examples turn out to be closer to each other in
addition to being roughly constant.
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Fig. 4. Fraction of top-k largest conductance edges correctly identified at
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Fig. 5. Fraction of top-k largest conductance edges correctly identified at
time t for Example 2

B. Top-k edge-conductance set estimation

We study the performance of our algorithm in recovering
the top-k largest conductance edges. Notice that this problem
is different from conductance estimation, because we are
now interested in only ranking the edges in the decreasing
order of their conductances. Ordinal estimation problems can
usually be solved much faster than their corresponding cardinal
estimation versions.

In Figures 4-6, we plot the fraction fk(t) of the top-k largest
conductance edges that were correctly identified as a function
of the number of steps t taken in the random walk. There is
one plot for each example. In each plot, there is one curve for
each indicated k.

As expected, the plots suggest that the estimated set of top-k
largest conductance edges improves with number of steps.

IV. CONCLUSION

Conductances are useful quantities that capture important
aspects of a network’s structure. They are used in several
important and practical applications. Many were highlighted
in Section I. A particularly useful application is the use of
approximate edge conductances in graph sparsification. In this
paper, we proposed a MCMC based conduction estimation
algorithm for edge conductance estimation. It is based on the
idea that an edge’s effective conductance Gij equals dipij ,
where pij is the probability that a random walk starting at
node i visits node j before returning to node i. While we
focused on estimation of conductances of edges, our algorithm
can be easily adapted for estimating the conductance value
across any pair of nodes: maintain and update the variable
p̂ij and p̃ij for every pair (or desired pairs) of nodes at
each step. Using concentration analysis, we obtained sample
complexities and provided corresponding probabilistic and
approximation guarantees. The theoretical performance guar-
antees are weak compared to existing centralized algorithms.
But numerical experiments showed optimistic results – the
convergence of estimated conductances to true conductances is
at the rate predicted if one removes the restrictive assumption
in Theorem 1 on ǫ. We also observed that the evolution of
top-k conductance set improves with the number of iterations.
Thus the scheme is well suited for ordinal inference.

Our algorithm is amenable to distributed implementation
when only effective conductances of edges are required. Each
node i keeps track of the number of visits of the random walk
to itself. When node i is visited, it updates counters (one for
each of its neighbors j) indicating that i was visited (in a j-to-
j walk). It also gathers information from each neighbor j on
whether j was visited in the just concluded i-to-i walk. This
information is obtained via a local communication. Finally,
the next node of the walk is also determined via locally
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Fig. 6. Fraction of top-k largest conductance edges correctly identified at
time t for Example 3
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generated randomness. If effective conductances between far-
off nodes is desired, the communication is however no longer
local. Our algorithm is also amenable to parallelization. One
could execute multiple such random walks in parallel, each
independent of the others, and then average them to get sharper
estimates.

APPENDIX

PROOF OF PERFORMANCE OF THE CONDUCTANCE

ESTIMATION ALGORITHM

In this Appendix, we prove Theorem 1. The total number
of visits to node i is Ni. Let p̃kij be the indicator that node
j was visited between the (k − 1)st and kth visit to node i.
The zeroth visit is assumed to have taken place prior to time
0. From step 5-(a)-(i) of the algorithm VisitBeforeReturn, we
have

p̂ij =

∑Ni

k=1 p̃
k
ij

Ni
. (4)

The main idea is to obtain a concentration inequality for the
denominator and then use it to get a concentration inequality
for p̂ij .

We begin by stating a result from [10], which is essentially
McDiarmid’s inequality for Markov chains.

Lemma 2 (Cor. 2.11 of [10].): Let (Xt, t ≥ 1) be the ran-
dom walk on G. Let its mixing time be tmix. Assume that X1

has the stationary distribution. Let X = (X1, . . . , XT ) ∈ V T

be the first T steps in this random walk. Suppose that for
some c ∈ RT

+, a function f : V T → R satisfies the following
(Lipschitz) condition,

f(x)− f(y) ≤
T∑

t=1

ctI[xt 6= yt] ∀x, y. (5)

Then for any ǫ ≥ 0, we have

P(|f(X)− Ef(X)| ≥ ǫ) ≤ 2 exp

( −2ǫ2
9‖c‖2tmix

)
.

We refer the reader to [10] for a proof. We now obtain a
concentration inequality for Ni, the denominator of (4).

Lemma 3: Let (Xt, t ≥ 1) be the random walk on G. Let
its mixing time be tmix. Assume that X1 has the stationary
distribution π. For i ∈ V , let Ni :=

∑T
t=1 I[Xt = i] be the

number of times node i is visited by this random walk upto
time T . Then, for any i ∈ V , any ǫ ≥ 0,

P

(∣∣∣∣
Ni

T
− πi

∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(−2T ǫ2
9tmix

)
. (6)

Proof: Fix a node i. Given X = (X1, . . . , XT ), define
f(X) := Ni/T . Since X1 has the stationary distribution π,
we have

E(f(X)) =
E(Ni)

T
=

1

T

T∑

t=1

E(I[Xt = i]) =
1

T

T∑

t=1

πi = πi.

Furthermore, for any x, y ∈ V T , we have

f(x)− f(y) =
1

T

T∑

t=1

(I[xt = i]− I[yt = i])

≤ 1

T

T∑

t=1

(I[xt 6= yt]) ,

and so f(·) satisfies (5) with ct = 1/T . By Lemma 2, we get
(6).

Our next step is to get the concentration for (4).

Lemma 4: Let X = (X1, . . . , XT ) be T steps of the
random walk on G. Let X1 have the stationary distribution
π. For (i, j) ∈ E, let p̂ij be as defined in (4) and let pij be
the probability that a random walk starting at node i visits
node j before returning to node i. Then, for any (i, j) ∈ E,
for any 0 < ǫ ≤ dij/(4m), and for T > 1/ǫ, we have

P(|p̂ij − pij | ≥ ǫ)

≤ 2 exp

(−2T ǫ2
9tmix

)
+ 8ǫT exp

(−ǫ2Tπi

4

)
. (7)

Proof: Define Xk := p̃kij − pij and SK :=
∑K

k=1 Xk.
Since |Xk| ≤ 1, and Xk’s are i.i.d., using Hoeffding’s
inequality [11], we have

P

(∣∣∣∣
SK

K

∣∣∣∣ ≥ ǫ

)
≤ 2 exp

(
−Kǫ2

2

)
, ∀ K ≥ 1.

We therefore have

P (|p̂ij − pij | ≥ ǫ)

= P

(
1

Ni

∣∣∣∣∣

Ni∑

k=1

(
p̂kij − pij

)
∣∣∣∣∣ ≥ ǫ

)

= P

(∣∣∣∣
SNi

Ni

∣∣∣∣ ≥ ǫ

)

= P

(∣∣∣∣
SNi

Ni

∣∣∣∣ ≥ ǫ,

∣∣∣∣
Ni

T
− πi

∣∣∣∣ ≥ ǫ

)

+ P

(∣∣∣∣
SNi

Ni

∣∣∣∣ ≥ ǫ,

∣∣∣∣
Ni

T
− πi

∣∣∣∣ < ǫ

)

≤ P

(∣∣∣∣
Ni

T
− πi

∣∣∣∣ ≥ ǫ

)

+

⌊T (πi+ǫ)⌋∑

k=⌈T (πi−ǫ)⌉

P

(∣∣∣∣
Sk

k

∣∣∣∣ ≥ ǫ,Ni = k

)
. (8)

Since πi = di/(2m) > 2ǫ, we have T (πi − ǫ) ≥ πi/2.
Focusing on the second term in (8), for ⌈T (πi − ǫ)⌉ ≤ k ≤
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⌊T (πi + ǫ)⌋, we have

P

(∣∣∣∣
Sk

k

∣∣∣∣ ≥ ǫ,Ni = k

)

≤ P

(∣∣∣∣
Sk

k

∣∣∣∣ ≥ ǫ

)

≤ max
⌈T (πi−ǫ)⌉≤k≤⌊T (πi+ǫ)⌋

P

(∣∣∣∣
Sk

k

∣∣∣∣ ≥ ǫ

)

≤ 2 exp

(
− ǫ2

2
⌈T (πi − ǫ)⌉

)

≤ 2 exp

(
− ǫ2

2
T (πi − ǫ)

)

≤ 2 exp

(
− ǫ2

4
Tπi

)
.

Plugging this upper bound into (8), we get that (8) is upper
bounded by

P

(∣∣∣∣
Ni

T
− πi

∣∣∣∣ ≥ ǫ

)
+ 2⌈ǫT ⌉ × 2 exp

(
− ǫ2

4
Tπi

)
.

Further, since ǫT > 1, we have ⌈ǫT ⌉ ≤ 2ǫT . This and Lemma
3 (to bound the first term) yield the desired result.

We are now ready to finish the proof of Theorem 1.

Proof of Theorem 1: The conductance estimate is given
by

Ĝij = max

(
1,

di
2
p̂ij +

dj
2
p̂ji

)
.

Subtracting Gij , and using Gij ≥ 1, we get the following
upper bound on the absolute value of the error:

|Ĝij −Gij | ≤
di
2
|p̂ij − pij |+

dj
2
|p̂ji − pji|.

Thus,

P(|Ĝij −Gij | ≥ ǫ)

≤ P

(
di
2
|p̂ij − pij |+

dj
2
|p̂ji − pji| ≥ ǫ

)

≤ P

(
|p̂ij − pij | ≥

ǫ

di

)
+ P

(
|p̂ji − pji| ≥

ǫ

dj

)
, (9)

where the last inequality follows by the union bound. Using
(7) with ǫ/di replacing ǫ, assuming ǫ/di < di/(4m) and T >
di/ǫ, and by noting that πi = di/2m, we get

P

(
|p̂ij − pij | ≥

ǫ

di

)

≤ 2 exp

( −2T ǫ2
9d2i tmix

)
+

8ǫT

di
exp

(
− ǫ2T

8mdi

)
. (10)

A similar bound applies for the second term in (9) after
assuming ǫ/dj < dj/(4m) and T > dj/ǫ.

Observe that one obtains c2Te
−c1T ≤ δ/4 whenever

T = (2/c1) log(4c2/(δc1)) or larger. Choosing c1 and c2
appropriately for the second term in (10), we note that

T i
1 :=

16mdi
ǫ2

log

(
256m

ǫδ

)

steps suffice to ensure that the second term in (10) is less than
δ/4. To ensure that the first term in (10) is less than δ/4, we
see that

T i
2 :=

9d2i tmix

2ǫ2
log

8

δ

steps suffice. Combining all the requirements and the assump-
tions on T , we have that

T = max

{
di
ǫ
,
dj
ǫ
, T i

1, T
i
2, T

j
1 , T

j
2

}

= Õ

(
Dij ·max{m,Dijtmix} ·

1

ǫ2
log

1

δ

)

steps suffice to ensure that the right-hand side of (9) is less
than or equal to δ.

At every time step of the algorithm, if Xt = i, O(di)
computations are performed. The next step of the random
walk requires at most O(log di) number of Bernoulli(1/2)
random variables generation, each of which we assume takes
O(1) steps. Taking both into consideration, in the long run,
the averaged total computation is O(davgT ) (worst case is
O(dmaxT )).

We need to store the variables Ni, Nip̂ij , p̃ij , and Ĝij

for each i ∈ V and j ∈ ∂i. Exact representation of each
these requires O(log T ) storage space. Thus the overall space
requirement is O(m log T ).
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