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Introduction Problem Statement

What is conductance? In this project, we focus on edge conductance estimation, as is
Imagine a graph as an electrical network with the edges as unit resistances joining the necessary for spectral sparsification. Our algorithms and analysis can be
two endpoints. Then for any two nodes in the graph, we define conductance as the source easily adapted for estimating conductances between non-adjacent nodes
current if we were to apply a source of unit voltage across the two nodes. If the voltage In many practical situations, the graph under consideration can be
source is applied across an edge, we get edge conductance. Resistance is inverse of very huge and dynamic. In such cases, we need adaptive algorithms with
conductance. low computation per iteration, low memory footprint, and amenability to
Why estimate conductance? parallelization. Thus we use MCMC based estimation procedures.
Conductance computation considers all paths between two nodes and weighs them
by their strength. Thus, it can be viewed as a distance metric robust w.r.t. edge or node Objective:
deletions unlike other metrics like shortest distance. Given an undirected, unweighted, finite graph, G = (V,E), we wish to design
Spectral sparsification is the problem of compressing the graph, such that the MCMC based algorithms to estimate all edge conductances. Throughout,
Laplacian quadratic form of the sparsifier approximates that of the original. In [2], it is we shall assume that the markov chain associated with the simple random
shown that approx. edge conductances can be used to construct high quality sparsifiers. walk on the graph is aperiodic., with a unique stationary distribution.

Basic Definitions and Notations
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Proposed Algorithms

Algorithm 2 HittingTimeMCMC : Based on hitting time estimation
1. Input N, G = (V,E)

Algorithm 1 VisitProbMCMC : Based on visit probability before return

L Input N, & = (V, E) 2. For each (i, j) € E, initialize H;; = N;; = 0,LV;; = —1
2. For each ¢ € V, initialize IV; = 0. L . . . .
T ot N 3. Sample initial node Xy, from the stationary distribution 7 (i) = d(i)/2m.
3. For each (i,7) € F, initialize p;; = p;; = 0. L fort—0to N — 1
4. Sample initial node Xy, from the stationary distribution 7 (i) = d(z)/2m. | (a) Let X, = i. for each j in N(i):
et X =e A. Hji « ((t = LVj) + HjiNyi) /(Nji + 1)
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(b) Nj < Ni+1 . S el e with L orobabil; (b) Jump to one of the neighbors of the current node with equal probability
(c) :]ump to one of the neighbors of the current node with equal probability Le. P(Xpuy = j|X, = i) = 1/d(i) Vi € N(i)
ie. P(X; =J|X,=1)=1/d(i) Vj e N(i) o N 1 - N
. d(i) d(7) 5. For every (¢,75) € F output R;; = —(H;; + Hy;)
6. For every (i,7) € E output G;; = — Pij | 5 Dii 2m .
Interpretation for the variables and logic in the above algorithm:
| | o . L. ﬁij is an estimate of hitting time form node ¢ to j (H;;).
Interpretation for the variables and logic in the above algorithm: 2. It LV}, is negative, it means that immediate visit to node 7 will not yield any estimate
1. pi; denotes the success or failure of visiting j in an instance of a return for H;;. This happens if the random walk returns to node j without visiting node .

3. If LV;; 1s non-negative, it denotes the last visit time of node ¢ relevant for estimation
of H;;. Note that this i1s not the same as latest visit time of node 7, because in cases
when node ¢ is visited multiple times before hitting j, the first (and not the latest)
visit to ¢ 1s usetul for estimating H;;.

path from 2 to ¢ contained in the random walk.

2. In the long run, every visit to node ¢ marks end of a return path. Thus,
on visiting node ¢, we can update the p;; using p;;.

3. Also, in the long run, every visit Eo node ¢ will necessarily be part of a 4. Nj; is the number of estimates for H;;
return path of every other node, pj; can be updated to 1 on vistiing 1. 5. On visiting node 7, if we can get an estimate of H;;, we update ﬁji and since no
4. Nj 1s the number of times node ¢ was visited estimate of H;; can be obtained immediately after that, we set LV}; to —1.
5. pi; which is just average of p;; is an estimate of p;;. 6. If we were not able to get any estimates for H;;, this changes on visiting node . Thus,
6. Now, Gi; — @pij d(j)pji. We have estimatod éij _ @@3 d(j)ﬁji LV;; 1s then Sft to the node visit time ¢. A o A
2 2 2 2 7. Now, R;; = %(Hw + Hj;). So, we have estimated it as R;; = %(HZJ + H;)

Theoretical Results

Numerical Experiments
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Both algorithms run in O(m) space and O(Dg,,N) time.




