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What is conductance?
Analogy

Given a graph G = (V ,E ), imagine each edge as a unit resistor.
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What is conductance?
Definition

i

j

Pick any two nodes i , j ∈ V .
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What is conductance?
Definition

i

j

Pick any two nodes i , j ∈ V .

Inject unit current at i and extract it at j .

Effective resistance between i and j is the potential difference
between them.

Effective conductance is inverse of effective resistance.
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Why estimate conductances?

Effective resistance as a robust measure of distance ([1], [2])

Considers all paths
Less sensitive to edge or node insertions and deletions

Sum of effective resistances across all pairs

measure of network robustness
equals network criticality parameter [4]

Edge resistances for graph sparsification [3]

Edges sampled (with replacement) according to their effective
resistance
Approximately preseves quadratic form of Graph Laplacian (i.e. x>Lx)
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Notation

G = (V ,E ) is an undirected, unweighted, connected, finite graph.

m = |E |, n = |V |
∂i = {j | (i , j) ∈ E}
di = |∂i |
dmax = maxi∈V di , dmin = mini∈V di

dij = min{di , dj}, Dij = max{di , dj}.
πi = di/2m, stationary distribution of simple random walk on G

davg =
∑

i∈V diπi

Gij = the effective conductance between i and j

Rij = the effective resistance between i and j
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Prior Work

Nodes of the graph can be embedded in Euclidean space so that the
resulting pair-wise distances encode the effective resistances.

The embedding depends on the edge-node adjacency matrix and the
Laplacian of the graph.

[3] uses low dimensional random projection to preserve pairwise
distances to estimate resistances. Takes only Õ(m/ε2) steps, but
requires centralized computation.
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Algorithm
Motivation

For large dynamic graphs, we would like algorithms that

Are distributed and use minimal local communication

Have low memory footprint

Use very few computations per step

Are easily parallelizable

Are incremental and adaptive
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Algorithm
Idea

We focus on edge effective conductance estimation as needed for
graph sparsification algorithm in [3].

We use random walks on the graph to estimate effective conductance
and effective resistances.

A random walk on the graph picks, from the current position, one of
the neighbors with equal probability. Such random walks naturally
give us many of the desired properties.

We assume positive recurrence of the associated Markov Chain.
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Algorithm
Idea

Let pij denote the probability that a random walk starting at node i
visits node j before returning to node i .

i

j

i

j
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Algorithm
Idea

A key fact that underlies our algorithm is:

pij = Gij/di

We estimate this probability by averaging results from several i to i
paths in a random walk.

We will show how this can be done only with local communication for
edge conductance estimation.
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Algorithm
Variables

Let’s introduce some variables that will be used in the algorithm

p̃ij is boolean. It denotes the the success or failure of visiting node j
in an instance of a return path from node i to node i of the random
walk.

Ni is the number of times node i was visited.

p̂ij is a running estimate of pij .
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Algorithm
Observation 1

In the long run, every visit to node i marks the end of a return path.
Thus, on visiting node i , we can update p̂ij using p̃ij .

i

j

p̃ij i

previous visit current visit
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Algorithm
Observation 2

A visit to node i at time t will be a part of a cycle that originated at
node j prior to time t and a subsequent return to node j after time t
(with probability 1, because of positive recurrence). Thus a visit to
node i can be used to update p̃ji .

j p̃ji ← 1 j

previous visit current future visit
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Algorithm
Pseudocode

Algorithm 1 Visit Before Return

Require: T , G = (V ,E )
1: ∀ i ∈ V ,Ni ← 0
2: ∀ (i , j) ∈ E , p̂ij = p̃ij = 0.
3: Sample initial node X1 from the stationary distribution π.
4: for t = [1, 2, 3, · · · ,T ] do
5: Let i = Xt

6: for all j in ∂i do
7: p̂ij ← (p̂ijNi + p̃ij)/(Ni + 1)
8: p̃ij ← 0
9: p̃ji ← 1

10: Ni ← Ni + 1
11: Jump to a neighbor of the current node as identified by the walk.

12: For every (i , j) ∈ E , output Ĝij = max
(

1, di2 p̂ij +
dj
2 p̂ji

)
.
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Complexity result

Theorem (Performance of VisitBeforeReturn)

Fix an edge (i , j) ∈ E . For any 0 < ε < d2
ij/(4m) and 0 < δ < 1/2,

T = Õ

(
Dij ·max{m,Dij tmix} ·

1

ε2
log

1

δ

)
steps suffice to ensure that the output Ĝij of the algorithm
VisitBeforeReturn satisfies

P(|Ĝij − Gij | ≥ ε) ≤ δ.

If the algorithm is run for T steps, it requires O(davgT ) computation steps
on the average (worst case O(dmaxT ) computations), and uses
O(m logT ) space.
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Proof ideas

p̂ij =

∑Ni
k=1 p̃

k
ij

Ni

.

Get concentration for Ni using McDiarmids inequality for Markov
chains.

Get concentration for p̂ij for a fixed Ni using Hoeffding’s inequality.

Combine the two.
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Simulation Experiments
Cardinal Estimation

ε(t) =
1

m

∑
(i ,j)∈E

∣∣∣Ĝij(t)− Gij

∣∣∣
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Simulation Experiments
Top-k set estimation

Incremental approximate estimation algorithms can typically recover
ordering much faster than exact values.
We test performance of our algorithm for recovering top-k edges with
high conductance by plotting fraction of top-k largest conductance
edges correctly identified at time t.
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Discussion

Our algorithm can be naturally distributed: each node stores
information about its neighbors.

Parallelization can be easily obtained by running multiple random
walks and avergaing their results.

Our guarantees are weaker as compared to [3]. Particularly, the
restriction on ε forces it to be too small. Whether this can be
removed is an open question.
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Conclusion

We have presented a MCMC based scheme to approximate edge
conductances.

Our algorithm is incremental and iterative, can be easily distributed,
works with local communication, and uses very little memory and
computation per step.

We provide theoretical guarantees on the performance.

Simulation experiments support our theoretical results.
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Thank you for your attention!
Questions?
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Appendix A

Estimating resistances from conductances

P

(
|R̂ij − Rij |

Rij
≥ ε

)
= P

(∣∣∣∣∣ R̂ij

Rij
− 1

∣∣∣∣∣ ≥ ε
)

= P

(∣∣∣∣∣Gij

Ĝij

− 1

∣∣∣∣∣ ≥ ε
)

= P(|Gij − Ĝij | ≥ εĜij)

≤ P(|Ĝij − Gij | ≥ ε),

where the last inequality follows because Ĝij ≥ 1.
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Appendix B

Our algorithm can be easily adapted for estimating the conductance
value across any pair of nodes: maintain and update the variable p̂ij
and p̃ij .

If effective conductances between far-off nodes is desired, the
communication is however no longer local.
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