
Longer RNNs

Ashish Bora Aishwarya Padmakumar Akanksha Saran

Abstract

For problems with long range dependencies, training of Re-
current Neural Networks (RNNs) faces limitations because
of vanishing or exploding gradients. In this work, we intro-
duce a new training method and a new recurrent architec-
ture using residual connections, both aimed at increasing
the range of dependencies that can be modeled by RNNs.
We demonstrate the effectiveness of our approach by show-
ing faster convergence on two toy tasks involving long range
temporal dependencies, and improved performance on a
character level language modeling task. Further, we show
visualizations which highlight the improvements in gradient
propagation through the network.

1. Introduction

Recurrent Neural Networks (RNNs) are powerful models
for learning in tasks involving sequential input/output, pos-
sibly of variable length. There have been several successful
applications of RNNs to various domains such as machine
translation [21], image and video captioning [25, 23], and
speech recognition [3]. Several state of the art methods use
RNNs [13, 18, 19, 7].

Despite tremendous success, learning long range dependen-
cies with vanilla RNNs is difficult [5]. A well known reason
for this problem is that gradient based training algorithms
suffer from the problem of vanishing or exploding gradi-
ents [1, 16].

Many solutions have been proposed to handle this problem,
the most successful of which has been Long Short Term
Memory (LSTM) units [6]. More recently, RNNs have
been shown to work on moderately long sequences by using
ReLU activation and initializing the hidden to hidden con-
nections with identity matrices (iRNN [11]). iRNNs have
the advantage of a smaller number of parameters and sim-
pler computations compared to LSTMs. The iRNN model
obtains superior results as compared to LSTMs on various
tasks as shown by Le et al. [11]. iRNNs have been sub-
sequently improved by Krueger et al. [10]. Despite many
advances, these models are still unable to learn well on a

simple addition task (Section 5.1) for sequences of length
larger than 400 which highlights their limitations.

Towards learning long range dependencies with recurrent
networks, our contributions are two-fold. First, we propose
a new training algorithm that relaxes tying of RNN param-
eters across time (Section 2). This approach is generic and
applicable to a wide variety of recurrent cells. Second, we
propose a new recurrent architecture using residual connec-
tions (Section 3) which is well suited to handle long term
dependencies.

For our experiments we use two toy tasks: addition and
multiplication (Sections 5.1, 5.2) and a language model-
ing task (Section 5.3). Experiments with our training algo-
rithm give us insights into the training of iRNNs and enable
us to learn with longer sequences on the addition task as
compared to prior work [11, 10]. With our residual recur-
rent architecture, we demonstrate even faster convergence
for learning addition and multiplication tasks on sequences
as long as 600 time steps. We also show improved perfor-
mance on character level language modeling of the Penn
Treebank dataset [14] on sequences of length 50. Gradient
visualizations give us insights into the training procedure
and expose some limitations of the iRNN model.

2. Very Long RNNs

As noted above, exploding and vanishing gradients are a
significant hurdle for gradient based learning in recurrent
architectures. We observe that this happens due to repeated
application of the same transformation at each time step. To
a first order approximation, if the transformation per step is
multiplication by a matrix (say A) at each time step, then
the hidden state at time t is Ath0, where h0 is the initial
hidden state. If the eigenvalues of the matrix are larger than
1, the activations explode and if they are less than 1, they
vanish. This is particularly problematic in RNNs that apply
sigmoid or tanh non-linearities over the activations as even
moderately large or small activations can lead to saturation
of the non-linearity and consequently, near zero gradients.
If ReLUs are chosen as the non-linearity instead, it does not
saturate but can instead be highly unstable during training
with a high learning rate, or train very slowly when a low
learning rate is used.

1



iRNNs [11] propose to solve this problem by initializing
the network weights such that the matrix A is identity.
This prevents activations from vanishing or exploding at
the start of training. We observe that even though this is a
very good initialization, it does not solve the problem com-
pletely. Indeed, as we train the model, the transformation
will change away from identity and the network faces van-
ishing/exploding gradients problem. In 6.9 we show several
visualizations that agree with this intuition.

The chief culprit for these problems is that we apply the
same transformation at every time step. This leads to ex-
treme sensitivity towards changes in the per step transfor-
mation. But using the same transformation need not be true
anytime during learning at all, except at test time, to allow
the trained network to be relatively small in size and also
guard against overfitting.

Based on this, we propose a new training approach to han-
dle the vanishing or exploding gradients problem. During
training, instead of forcing all RNN weights to be the same
at each time step, we allow them to be different. Then, as
the network learns, we slowly encourage the weights to be
closer to each other by introducing a penalty term whose
strength grows as we train. This method allows for tempo-
ral decoupling of learnable parameters which might lead to
better gradient propagation. We call iRNN models trained
with this method ‘Very Long RNN’ or ‘VL-iRNN’.

Formally, let RNNθ be an RNN cell parameterized by θ.
Let us assume that we apply it to a length T sequence
{xi}Ti=1 and the loss as a result is L(θ). We use a new set
of RNN parameters θt for each time step t ∈ [T ]. Then the
RNN loss is a function of all the parameters, i.e. L((θi)Ti=1).
We add a penalty term

P ((θi)
T
i=1) = ρ

T−1∑
i=1

‖θi − θi+1‖2

where ρ is a penalty multiplier. We then do gradient based
learning on the sum of the RNN loss and the penalty term.
We initialize ρ with a very small value and gradually in-
crease it. This allows for decoupled learning initially, and
serves to bring the matrices together to each other near the
end of training.

One of the drawbacks of this approach is that while train-
ing we need to store one set of parameters for each time
step. This can take up large amount of memory, especially
if the sequences are very long. To ameliorate this, we use a
modified scheme where the parameters for first several steps
are the same, followed by a new set of parameters for the
next few steps and so on. By bucketing the time steps into
consecutive groups, we can keep the memory requirement
under control. We call each of these consecutive blocks a
scope.

Figure 1: ResRNN cell. The blocks with purple color have
learnable parameters.

Similar idea of decoupling parameters is well known in con-
vex optimization literature. However the applications there,
like parallelizability in the dual ascent algorithm, are differ-
ent from our setting. Our contribution is aimed at the appli-
cation of variable splitting to improve gradient propagation
while training RNNs.

Similar to the interior point methods in linear program-
ming [8], we use an exponential schedule for increasing the
penalty multiplier.

3. Residual RNN

Residual connections were recently introduced in He et al.,
2015 [4]. The residual connections allow for better propa-
gation of gradients, thus allowing fast training of convolu-
tional networks with as many as 1000 layers. Architectures
using residual connections achieve state of the art results
in many vision tasks [4, 22]. Inspired by their recent suc-
cess, we introduce a residual RNN (resRNN) architecture to
model long range dependencies. Note that unlike standard
residual networks, the weights of RNNs at each time step
are tied to each other.

A diagram of the residual cell is shown in Fig. 1. We use
a combination layer (Whh2, b2) before adding the residual
connection. This is essential for the non-residual RNN part
to be able to learn to subtract the input given by the residual
connection, if necessary.

Our initialization for parameters in this model is inspired
by the iRNN initialization. To make the hidden to hidden
transitions be identity in the absence of any inputs, we ini-
tialize Whh1, b1, Whh2 and b2 to have all entries equal to
zero.

4. Related Work

The most commonly used modifications of RNNs for han-
dling long-range dependencies is the Long Short Term

2



Memory (LSTM) [6] or Gated Recurrent Units (GRU) [2].
These significantly increase the number of parameters of the
network and iRNN [11] is an initialization technique that
provides comparable performance with LSTMs without this
drastic increase in the number of parameters as shown by Le
et al. [11].

An extension of iRNNs to prevent exploding gradients out-
side the training horizon is the work of Krueger et al.,
2015 [10], which penalizes the norm of the hidden state vec-
tors. This is similar to the idea of penalty in our proposed
VL-iRNN algorithm 2. However, we modify the learning
procedure rather than imposing a constraint on the model
itself.

There have also been some attempts to incorporate residual
connections into recurrent architectures. Pradhan et al. [17]
add residual connections to LSTMs and demonstrate im-
proved performance on a sentiment analysis task. In con-
trast, our proposed resRNN incorporates residual connec-
tions into a vanilla RNN, which also keeps the number of
parameters much lower than that required by an LSTM. An-
other model more similar to ours is that of Wang et al. [24].
In comparison to their work, we use a simpler 2-step trans-
form at each recurrent step, and ReLU as a non-linearity
instead of tanh.

Liao et al., 2016 [12] demonstrate formally that a deep
residual network with weight sharing is formally equivalent
to a shallow RNN, and they propose a model that general-
izes the two. However it is formulated in terms of dynami-
cal systems and it is not clear whether the model is capable
of handling longer range dependencies. It is proposed as a
model of the visual cortex and experiments only consider
tasks typically modeled using convolutional networks, not
sequence tasks.

Another related model is the recurrent highway network by
Zilly et al., 2016 [26]. These networks are both deep in
terms of unrolling in time as well as in space via multiple
highway layers in the LSTM cell, extending the LSTM ar-
chitecture to larger step-to-step transition depths. However,
their goal is to model more complex state transitions in an
LSTM cell without further increasing the difficulty of train-
ing. However, they do not focus on modeling long range
dependencies and the maximum recurrence depth used in
their experiments is 10. Our goal is different in that we aim
to model long sequences and use fewer parameters than an
LSTM.

5. Tasks

We employ three tasks to test VLiRNN, resRNN and com-
pare them to iRNN. We describe each task in detail be-
low.

5.1. Addition

The addition task is a toy problem designed to test the abil-
ity of recurrent networks to handle long-range dependencies
[11]. It is a regression task over a 2-dimensional input se-
quence. At each time step, the first dimension of the input
is a signal which is drawn uniformly at random from [0, 1].
The second dimension is a binary mask, which is 0 every-
where, except at exactly two time steps in the sequence cho-
sen at random where it is 1. The recurrent network reads
the entire sequence and must then predict the sum of the
two signals corresponding to time steps when the mask has
value 1. The loss function used is the mean squared error
between the predicted and true targets.

The simplest baseline is to predict the target to be the mean
of the target distribution regardless of the inputs. This re-
sults in a mean squared error equal to the variance of the
target distribution, which is about 0.1767. The goal is to
train a model that obtains a mean squared error consider-
ably lower than this estimate on an unseen test set.

For a given sequence length, training and test sets with input
sequences are generated beforehand and the same training
and test sets are used for all models. By default we use
a training set of 100000 sequences and a test set of 10000
sequences.

5.2. Multiplication

The multiplication task is another toy task similar to the ad-
dition task. The input sequence is similar to the addition
task, except that the signal is drawn from a uniform distri-
bution over [0, 2]. The target to be predicted is the product
of the two signals corresponding to time steps with a mask
of 1, instead of the sum. The loss function is again the mean
squared error between the predicted and true targets. Train-
ing and test sets are created in a manner similar to the addi-
tion task.

Always predicting the mean of the target distribution
achieves a mean squared error equal to the variance of the
target distribution, which is 0.778. A good model should
obtain a mean squared error considerably lower than this
value.

5.3. Language Modeling

We also evaluate our models on the task of character-level
language modeling to demonstrate the applicability of our
models to real-world tasks [10].

Character level language models can be used to model un-
seen words in speech recognition, language understanding

3



or keyword spotting tasks. Further, the standard smooth-
ing techniques used in traditional n-gram language models
work poorly for these tasks, increasing the need for good
neural language models [15].

We use the Penn Treebank [14] dataset to evaluate the lan-
guage modeling task. We use the preprocessed character
level text from Mikolov et al., 2012 [15] and the same train
and test splits. We note that while preprocessing, spaces
between words and sentence boundaries are marked by two
special characters. In total, this gives us a character level
vocabulary of size 50. At each time step, the input to the
recurrent network is the character at the current time step,
one hot encoded using the character vocabulary. The output
is a prediction of the character at the next time step, in the
form of a probability distribution over the characters in the
vocabulary.

Similar to [10], the text is split into sequences of a fixed
length both during training and testing. The loss function
used during training is the cross-entropy with respect to the
true next character at each time step. The task is evaluated
in terms of cross entropy loss per character over the test
set.

6. Experiments

The following experiments compare our proposed models
with iRNN on the tasks described in section 5. We do not
compare with LSTMs because Le et al., 2015 [11] demon-
strate that iRNNs are comparable with the standard imple-
mentation of LSTMs on similar tasks. Unless mentioned
otherwise, experiments use a hidden state vector of size 100,
initialization as in Le et al., 2015 [11], a learning rate of
0.001, gradient clipping of 0.1, train batch size of 16 and a
test batch size of 20. We experimented with different values
for learning rate and gradient clipping but these produced
the best results in most cases.

6.1. Addition task - iRNN vs VL-iRNN

We compare VL-iRNN to iRNN on the addition task with
sequence length 400. VL-iRNN and iRNN both are trained
using SGD as solvers in this experiment, following the im-
plementation details of [11]. For VL-iRNN, we divide the
time steps into 10 scopes, each of length 40. The test loss
can be seen in Fig. 2. We tried several learning rates for
each model, but only the best models are shown.

We observe that VL-iRNN starts to learn faster than iRNN,
but saturates at a high error. The iRNN is initially very slow
to learn but eventually obtains a much lower test loss. How-
ever, the test performance of iRNN shows a considerable
amount of variance. We were unable to increase the speed

Figure 2: Test loss for VL-iRNN and iRNN on the addition
task for sequences of length 400. Both VL-iRNN and iRNN
use SGD as the solver in this experiment.

of learning for iRNN by using a larger learning rate because
it quickly lead to instability and divergence. Using lower
learning rates would result in less variance in the test loss
and also make learning slower.

6.2. VL-iRNN - Different learning algorithms

There can be several reasons for why VL-iRNN saturates.
To eliminate some of these, we note that the test set error of
any learning algorithm can be decomposed into three com-
ponents -

1. Sampling error : The training set is finite and cannot
represent the underlying distribution fully

2. Bias : The hypothesis class of the learning algorithm
is too limited

3. Optimization error : We are not able to find good func-
tions within our hypothesis class due to limitations of
the optimization procedure.

Sampling error can be ruled out because iRNNs do learn
with the same training set (before becoming unstable). Bias
cannot be the explanation either since VL-iRNN has a lower
bias than iRNN. We also verified that the VL-iRNN is not
overfitting - train and test losses are comparable and show
the same trend over time. This leaves us with optimization
error to be the most likely explanation.

In this experiment, we tried several learning algorithms
(each with a range of hyperparameters) to see if we can
overcome the difficulty in optimization. In Fig.5, we
show the results with Stochastic Gradient Descent (SGD),
Adam [9], and SGD with momentum [20]. We see that SGD
and Adam (Fig. 3 shows a closer view of Fig. 5 for these
solvers) both saturate to about the same test loss. SGD with
momentum (see VL-iRNN-400-momentum in Fig. 5) how-

4



Figure 3: VL-iRNN with adam and SGD solvers tested on
the addition task for sequences of length 400.

ever enables VL-iRNNs to learn very well. We also note
that in 1.8 million iterations, VL-iRNN with momentum
converges to a lower test loss than the lowest achieved by
iRNN as shown by Le et al. [11], even when trained for 9
million iterations.

6.3. VL-iRNN with penalty

The previous experiment shows that the VL-iRNN model
reliably and quickly learns the addition task on sequences of
length 400 with 10 scopes. It is however not ideal since we
have to use 10 times more parameters than the iRNN model.
Thus, as described in Section 2, we introduce a penalty term
to bring the matrices closer to each other, so that the trained
network can be made to use only a single scope.

The penalty multiplier starts out at 2 × 10−6 and is multi-
plied by 1.001 every 37 training iterations. These numbers
are chosen such that the penalty multiplier is about 106 at 1
million iterations.

In Fig. 5, we show the test loss for this method (see VL-
iRNN-400-penalty in Fig. 5) as compared to others (see
VL-iRNN-400-adam, VL-iRNN-400-momentum and VL-
iRNN-400-sgd). We observe that even with the penalty
term, using SGD with momentum, the VL-iRNN attains
a test loss similar to when there is no penalty between
scopes.

In Fig. 4 we show the evolution of the penalty value (with-
out the multiplier). As expected we see that the penalty
grows initially since the multiplier is small. After a point,
the multiplier becomes large enough that the penalty starts
to reduce. Finally, the penalty becomes almost zero indi-
cating that all consecutive parameters sets are very close to
each other. This demonstrates that the penalty method is ef-
fective in bringing parameters across different scopes close
to each other.

Figure 4: Evolution of the penalty value (without the mul-
tiplier) for VL-iRNN with penalty. The experiment is per-
formed on the addition task for sequences of length 400.

6.4. iRNN with Momentum

Comparing Fig. 4 and Fig. 5 (VL-iRNN-400-penalty), we
see that rapid learning of the VL-iRNN starts only when the
penalty term is near zero. At this point, parameters across
different scopes are very close to each other and thus the
VL-iRNN is essentially an iRNN. Since we are able to learn
with parameters across scopes being almost identical, it is
important to examine whether the VL-iRNN obtains better
results than the iRNN due to the decoupling of parameters,
or because we use SGD with momentum for optimization
instead of vanilla SGD.

To answer this, we attempted training iRNNs using SGD
with momentum. The results are shown in Fig. 5 (see
iRNN-400-momentum). We see that this achieves very
good performance as compared to other models – it con-
verges faster and to a better value.

6.5. Limits of iRNN

Since iRNN with momentum works the best, in this ex-
periment we test the limits of this model to see the range
of dependencies it can model. We use the same task,
i.e. addition, but use longer sequences of length 500 and
600.

The results are shown in Fig. 6. We see that the model con-
verges for sequences of length 600, but diverges for 500.
The learning is already extremely slow; the model doesn’t
show any drop in the error till about 550k iterations for
length 600. Thus, while it is possible that decreasing the
learning rate will enable learning on length 500, it will make
learning even slower which is undesirable.

This experiment also shows that iRNNs trained using SGD
with momentum is still a very unstable algorithm.

5



Figure 5: Test loss comparison for VL-iRNN with different
solvers and iRNN with SGD and momentum. The exper-
iment is performed for the addition task on sequences of
length 400.

Figure 6: Performance of iRNNs trained using SGD with
momentum on the addition task for sequences of length 500
and 600.

6.6. resRNN

Since iRNNs are unstable and VL-iRNNs reduce to iRNNs
when the penalty term is used, another alternative is still
necessary for modeling long sequences. In this experi-
ment, we explore the potential of our other proposed model
- resRNNs (Section 3). Fig. 7 shows the test loss of the
resRNN on the addition task using sequences of length
400.

As can be seen in the figure, resRNN learns faster than
iRNN. In fact, resRNNs learn the addition task very fast
for sequences of length 500 and 600 as well, compared to
iRNNs. Though there are minor oscillations in the test loss
as the sequences get longer, resRNNs outperform iRNNs
for these long sequences.

Figure 7: Test performance of resRNN and iRNN for the
addition task on sequences of length 400. Both use SGD
with momentum as the solver for this experiment.

Figure 8: Test performance of resRNN and iRNN on the
multiplication task with sequences of length 100 and 200.

6.7. Multiplication Task

One can argue that the capability of resRNNs to outperform
iRNNs on the addition task is inherent to the architecture
of the residual cell (Section 3). Since the residual cell (Fig.
1) has an in-built addition operator directly using the input,
the performance of resRNN may be attributed to the task
being almost encoded in the architecture. To decouple the
potential of resRNNs in learning longer sequences from the
addition task, we also test its performance on the multipli-
cation task as described in Section 5.2.

We can see in Fig. 8 that resRNNs learn multiplication
faster than iRNNs for sequences of length 100 and 200.
We tried experimenting with sequences of longer length
(400, 500) but did not find any hyperparameters leading to
stable performance for either resRNNs or iRNNs. A full
fledged grid search over hyperparameter values for longer
sequences remains to be done and would be part of future
investigations.

6



Figure 9: Character level language modeling for sequences
of length 50 from the Penn Tree Bank dataset [14].

6.8. Language Modeling

We also compare resRNNs and iRNNs on a real-world ap-
plication - character level language modeling (Section 5.3).
The test loss over different learning rates can be seen in
Fig. 9 for a fixed sequence length of 50, with 100 hidden
units in each architecture. We again see that the test loss of
resRNNs is consistently lower than iRNNs. Hence we find
that resRNNs with momentum are a better model for learn-
ing longer sequences than iRNNs with momentum.

6.9. Gradient Analysis

From the various learning curves, we see that the test loss
for iRNNs stays at a high value for a very long period at the
beginning of training. This is seen consistently for many
training algorithms, hyperparameter settings and sequence
lengths. Here, we present visualizations that can help us
understand this phenomenon.

We aim to visualize the gradient propagation in the network.
Even though the parameters are tied across time, we can
compute the partial derivatives with parameters at each time
step assuming they can be independently changed. The ac-
tual gradient applied to the parameters is then the average
of all of these gradients. Consequently, a simple way to vi-
sualize the gradient propagation through the network is to
look at the gradient statistics over time steps, and seeing
how they change as we train.

For the iRNN model trained using SGD with momentum,
we show these visualizations for the training iterations at
different intervals in Fig. 10. For each training iteration,
we show the min, median and max of the gradients w.r.t the
hidden to hidden connection matrix, for each time step of
the RNN. We see that the gradient propagation is excellent

at the beginning with almost steady decrease as we go back-
wards. This becomes substantially worse as we train. We
see a quick drop in the backpropagated gradients and they
remain zero thereafter. The situation improves near train-
ing iteration 225k and the gradient propagation looks better
again. This is precisely the point where the iRNN starts
to train well (Fig. 5). After this point, the gradients are
more or less equally distributed. We observe that such gra-
dient distribution is a good sign that the network has learned
well.

We note that this visualization also reinforces our remark
in Section 1 that even though the iRNN is initialized prop-
erly, subsequent learning takes it to a vanishing or explod-
ing gradient regime, from which it takes a long time to re-
cover.

In Fig. 11 we show similar visualizations for resRNN pa-
rameters Whh1 and Whh2 (Fig. 1). The gradients with
Whh1 are identically zero at the first training iteration. This
is due to the zero initialization of the network. The gradient
distribution subsequently becomes close to the initial gradi-
ent plot of iRNN and maintains a similar shape throughout.
The Whh2 distribution is balanced right from the beginning
and stays the same as we train. The main takeaway from
these visualizations is that residual networks are able to give
gradient signals far back in time and hence train better than
iRNNs.

7. Discussion and Future Work

VL-RNN training approach is strictly a superset of the RNN
training. Indeed by making the penalty multiplier infinity,
we exactly recover the RNN training algorithm. But it is
unclear whether having a penalty multiplier equal to infinity
right from the beginning (as with regular RNNs) is the right
choice. The advantage of this approach is that it can poten-
tially work on very long range sequences and also with a lot
of activations including non saturating ones like ReLU. A
disadvantage is that we have a separate matrix for each time
step or set of time steps. This might need a lot of memory.
Also, applying this model to real world data may bring other
challenges not addressed here. In our experiments, we also
found that the VL-iRNN training was extremely sensitive
to the choice of penalty multiplier schedule, showing wild
oscillations if we use too large a penalty too early. Figuring
out a principled approach to use the penalty method is an
interesting open problem.

It is unclear how resRNN should be compared to iRNN
models. It may be relevant to compare them by using the
same number of parameters. This however allows iRNN to
have a larger hidden state. In our experiments, we chose to
keep the size of the hidden state same for both models. We

7



(a) checkpoint 0 (b) checkpoint 75k (c) checkpoint 150k (d) checkpoint 225k

Figure 10: iRNN gradient visualizations for Whh : max (red), median (green), min (blue)

(a) checkpoint 0 (b) checkpoint 50k

(c) checkpoint 100k (d) checkpoint 150k

Figure 11: resRNN gradient visualizations for Whh : max (red), median (green), min (blue)

leave the other experiment for future work.

We have not yet tried to test the limits of resRNN on the
addition and multiplication tasks. It would be interesting
to know the maximum sequence length for which residual
recurrent networks can learn these tasks. Also, we did not
train language models with larger number of hidden units
due to memory constraints. Testing the limits of resRNN
and iRNN for language modeling in terms of more hidden
units would also be a direction of future work.

Document level language tasks such as summarization,
classification and question answering rarely use the sequen-
tial nature of the data, primarily due to inability of the cur-
rent recurrent models to learn very long term dependencies.
Models that overcome this difficulty can potentially give
improved performance on such tasks.

Getting and interpreting visualizations similar to the ones in
the previous section, for VL-iRNNs and for other popular
recurrent models is also left for future work.

8. Conclusion

In this work, we have presented a new training algorithm
and a new recurrent architecture to learn long term depen-
dencies. On two toy problems, we have shown improve-
ments in the length of dependencies that can be learned as
well as the speed of convergence. On a language modeling
task, our models achieve a slightly better cross entropy loss.
Finally, we have shown gradient visualizations which ex-
pose some of the inner workings of these algorithms.

References

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term
dependencies with gradient descent is difficult. IEEE trans-
actions on neural networks, 5(2):157–166, 1994.

[2] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

[3] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recogni-
tion with deep recurrent neural networks. In 2013 IEEE in-

8



ternational conference on acoustics, speech and signal pro-
cessing, pages 6645–6649. IEEE, 2013.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[5] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.
Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies, 2001.

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[7] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu,
Z. Chen, N. Thorat, F. Viégas, M. Wattenberg, G. Cor-
rado, et al. Google’s multilingual neural machine transla-
tion system: Enabling zero-shot translation. arXiv preprint
arXiv:1611.04558, 2016.

[8] N. Karmarkar. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 302–311. ACM,
1984.

[9] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[10] D. Krueger and R. Memisevic. Regularizing rnns by stabi-
lizing activations. arXiv preprint arXiv:1511.08400, 2015.

[11] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initial-
ize recurrent networks of rectified linear units. arXiv preprint
arXiv:1504.00941, 2015.

[12] Q. Liao and T. Poggio. Bridging the gaps between residual
learning, recurrent neural networks and visual cortex. arXiv
preprint arXiv:1604.03640, 2016.

[13] L. Ma, Z. Lu, and H. Li. Learning to answer questions from
image using convolutional neural network. arXiv preprint
arXiv:1506.00333, 2015.

[14] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Build-
ing a large annotated corpus of english: The penn treebank.
Computational linguistics, 19(2):313–330, 1993.

[15] T. Mikolov, I. Sutskever, A. Deoras, H.-S. Le, S. Kom-
brink, and J. Cernocky. Subword language modeling
with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 2012.

[16] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty
of training recurrent neural networks. ICML (3), 28:1310–
1318, 2013.

[17] S. Pradhan and S. Longpre. Exploring the depths of recurrent
neural networks with stochastic residual learning.

[18] V. Ramanishka, A. Das, D. H. Park, S. Venugopalan, L. A.
Hendricks, M. Rohrbach, and K. Saenko. Multimodal video
description. In Proceedings of the 2016 ACM on Multimedia
Conference, pages 1092–1096. ACM, 2016.

[19] I. V. Serban, R. Lowe, L. Charlin, and J. Pineau. Generative
deep neural networks for dialogue: A short review. arXiv
preprint arXiv:1611.06216, 2016.

[20] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the
importance of initialization and momentum in deep learning.
ICML (3), 28:1139–1147, 2013.

[21] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Advances in neural infor-
mation processing systems, pages 3104–3112, 2014.

[22] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,
inception-resnet and the impact of residual connections on
learning. arXiv preprint arXiv:1602.07261, 2016.

[23] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach,
R. Mooney, and K. Saenko. Translating videos to natural lan-
guage using deep recurrent neural networks. arXiv preprint
arXiv:1412.4729, 2014.

[24] Y. Wang and F. Tian. Recurrent residual learning for se-
quence classification.

[25] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhut-
dinov, R. S. Zemel, and Y. Bengio. Show, attend and tell:
Neural image caption generation with visual attention. arXiv
preprint arXiv:1502.03044, 2(3):5, 2015.

[26] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmid-
huber. Recurrent highway networks. arXiv preprint
arXiv:1607.03474, 2016.

9


