
Predicting algorithmic approach for programming problems from natural
language problem description

Ashish Bora
ashish.bora@utexas.edu, UTEID : ab58952

Abhishek Sinha
as1992@cs.utexas.edu, UTEID : as76588

Abstract

In this paper, we study the problem of predicting the algo-
rithmic approach useful for solving a programming prob-
lem given its natural language description. As an auxil-
iary task, we also try to predict the difficulty of a problem
given its natural language description. In order to solve
this problem, we built our own dataset using 2 popular al-
gorithmic programming websites, namely, Codechef www.
codechef.com and Codeforces www.codeforces.
com. In this paper we present an attempt at solving this
problem.

We use hashing, bag of words and word embeddings
(word2vec) for feature extraction. We train a Long
Short Term Memory (LSTM) network for the tasks. We
also propose and evaluate a novel pre-training idea spe-
cific to our problem. The code for this project can
be found at https://github.com/AshishBora/
nlp-project.

1. Introduction

Most taks in natural language processing are highly obvious
to humans. Consider for example, WSD, POS tagging, sen-
timent analysis, discourse analysis, etc.; any human with
a reasonable language understanding can easily do these
tasks. In fact most algorithms for these tasks are bench-
marked against human performance. In contrast consider
the following input text:

Alice loves simple strings! A string t is called simple if every
pair of adjacent characters are distinct. For example ab,
aba, abc are simple whereas aa, add are not simple. Alice
is given a string s. She wants to change a minimum number
of characters so that the string s becomes simple. Help her
with this task.

Given a problem like the one above, a competitive computer
scientist, after some deliberation, can recognize that this al-
gorithmic task can be efficiently solved using dynamic pro-

gramming.

In this paper we make an attempt at making a system which
can do the same. i.e. We study the problem of predicting
the algorithmic approach for solving an algorithmic prob-
lem given its natural language description. We emphasize
that the problem to be solved is expressed more as a riddle
rather than in a logical specification. In contrast to Natural
Language Programming [7], in our task the algorithm is not
directly told what is to be done, it has to infer that, albeit
implicitly.

Predicting the algorithmic tag isn’t a trivial task even for hu-
mans. Moreover for this task, it isn’t the exact words used
that matter as much as the deeper meaning of the word and
the problem text. For example the subjects, situation, items
exchanged, motives, and so on, can all be replaced while
still keeping the underlying algorithmic problem largely un-
changed. As a result, techniques which only look at surface
statistics are unlikely to be effective. Thus, the main ap-
proach we tried was to use a Long Short Term Memory[2]
(LSTM) on the sequence of word-level representation of the
problem text. LSTMs are known to be Turing complete [5],
i.e. given enough memory, time and processing power, they
can compute everything that is computable. More recently,
LSTM networks were successfully trained for natural lan-
guage problems [6].

Most of the earlier work in this area was centered on apply-
ing NLP to solve simple algebra problems end to end ([1],
[3]). These approaches took simple word problems as in-
put and the goal was to parse and understand the problem,
solve it and report the final answer. However, most of these
problems were trivial enough that they could be solved by
a human with high school math skills. On the other hand,
the problems we are looking at are much more complicated.
Hence, we have restricted our objective to predicting the
solution category rather than actually solving the problem
(like generating code or pseudo-code).

1

www.codechef.com
www.codechef.com
www.codeforces.com
www.codeforces.com
https://github.com/AshishBora/nlp-project
https://github.com/AshishBora/nlp-project


2. Problem Definition

2.1. Approach Prediction

In this problem, the input is a natural language ques-
tion (as described in the introduction) and the desired out-
put is its algorithmic category (such as dynamic program-
ming).

2.2. Difficulty Prediction

In this problem, the input is a natural language question (as
described in the introduction) and the desired output is its
difficulty category.

3. Related Work

As described in the introduction section, most of the ear-
lier work in this area was on using NLP to solve simple
arithmetic word problems. In [1], the authors try to solve
simple Mathematical Word Problems. They use Random
Forest along with simple word and sentence level features
to classify the problem into 3 arithmetic problem types (Join
and Separate, Part-part-whole and Comparison). They also
extract the numerical values in the problem text. Based on
the inferred arithmetic problem type, they then apply the
appropriate arithmetic transformation to generate the final
answer.

In [3], the authors solve algebra word problems which are
more complicated than [1] but these are still very simplistic
as compared to the complexity of the problems we consider.
The authors use a set of equation templates (which can be
learned). They also computes sentence and word level fea-
tures. To compute the most probable template assignment,
the authors use a logistic regression model to score the prob-
lem template pair. The solution outputs, then, is the one
computed using the most probable assignment.

In terms of methods, LSTMs have been used in the Natu-
ral Language Community for several problems such as lan-
guage modeling [8], machine translation [6]. Word2Vec
embeddings first described in [4] have also been found to
be useful in a number of NLP tasks.

4. Datasets

4.1. www.codeforces.com

We scraped 2848 problems along with their tags from www.
codeforces.com/problemset. There are multiple
tags for each problem indicative of the algorithmic ap-
proaches useful for solving that problem. For example the

problem above has tags: dp, hashing, strings, two pointers,
greedy.

We observed that the first tag is the most informative and
hence chose that as the tag to be predicted. Further we re-
move the tags which are very generic (like data structures,
implementation, etc.). Finally we are left with 1954 prob-
lems and 30 different tags. The top 5 categories with their
occurrence in percentage are – dp : 17.92, greedy : 15.87,
binary search : 11.55 dfs and similar : 10.64, combinatorics
: 06.37, geometry : 05.57. In the rest of the text, we will
call this dataset, with single tags as ’codeforces’.

4.2. www.codechef.com

The data on this website is very different from the one
above. Although, the website does provide some tags for
algorithmic approaches for each problem, they are often
mixed among a host of other tags like the day the problem
was posted and problem submitter’s name.

On the other hand the website neatly categorizes problems
by their difficulty level. Further, counts of successful sub-
missions for each problem and the overall accuracy for each
problem are provided. Thus, the tags in this dataset are very
complementary to the first one.

We were able to scrape 4898 problems with all the aux-
iliary information. The break-up of the dataset by level
is as follows: school(very easy): 73, easy: 397, medium:
422, hard: 263, challenge (very hard): 90, extcontest: 3653.
The ’extcontest’ category contains problems from external
contests. These problems are of various levels and thus,
we do not know difficulty of individual problems. In the
following, we will call the dataset with difficulty level as
’codechef-diff’.

5. Feature Extraction

From our literature survey, we found that for related tasks
such as solving simple mathematical problems, removing
stop-words, lemmatizing and stemming lead to compara-
tively worse performance. This suggests that mathemati-
cal word problems are very sensitive to minute changes in
the text and we expect a similar pattern in our task as well.
Thus, we decided not to any word or phrase level prepro-
cessing. Instead we explore the following three approaches
for feature extraction:

5.1. Hash Vectorizer

We use hashing vectorizer to convert a collection of text
documents (stream of words) into a stream of hash values.
We specify a maximum vocabulary size and only hash the

2

www.codeforces.com/problemset
www.codeforces.com/problemset


Figure 1. LSTM architecture

words part of the generated vocabulary. The words chosen
in the vocabulary are those with the maximum frequency
count across the collection of documents. In our project,
we experimented with vocabulary sizes of 1000 and 5000.
We call this representation ’hash-stream’.

5.2. Bag of Words

Once we get the hash stream of integers for each word, we
can count the number of occurrences of a particular hash
token. We represent these counts as a vector of dimension
equal to the vocabulary size and call it ’bow’ standing for
bag of words.

5.3. Word-2-Vec

In this pipeline, we use the a word embedding model pre-
trained on Google News dataset of about 100 billion words
1. The model contains a mapping for about 3 million words
to 300-dimensional vectors. Thus, the feature obtained for
every problem is the sequence of word2vec vectors. If a
particular word is out of vocabulary, i.e. if a word2vec
mapping for that word does not exist, then we simply ig-
nore those words. This representation will be referred to as
’word2vec’

’hash-stream’ and ’word2vec’ are richer representations
than ’bow’ features because they capture the temporal struc-
ture in the data. On the other hand, they are of variable
length, and hence more cumbersome to handle.

1https://code.google.com/archive/p/word2vec/

6. Algorithmic approaches

6.1. Baselines : Approach Prediction

1. Random Forest: Random Forests trained with entropy
criterion on ’bow’ representation.

2. Gradient Boosting: Standard gradient boosting (XG-
Boost) on the ’bow’ representation.

3. Logistic Regression: l-2 regularized logistic regression
on ’bow’ representation. We used lbfgs solver to speed
up the convergence.

6.2. LSTM : Approach prediction

To handle variable length features as given by ’hash-stream’
or by ’word2vec’ , we use a LSTM model. Our architecture
is shown in Fig 1. Firstly, the words are individually and
independently encoded. For the hash-stream, the words are
encoded as one-hot vectors over the vocabulary. For the
word2vec model, we use the 300-dimensional representa-
tion directly. These are then fed to the LSTM model. We
tried different number of hidden units (see Results section).
There is no loss at the output of the LSTM at all but the last
step. At the last time-step, we apply a linear readout layer
from the LSTM states to 30-dimensional vector correspond-
ing to the 30 output categories, followed by a softmax. This
gives a probability distribution over the algorithmic cate-
gories. We use negative log-likelihood of the training data
as our loss.

6.3. LSTM : Difficulty prediction

As explained in the introduction section, we also tried to
solve the auxiliary task of predicting the problem difficulty

3



from its natural language description. The LSTM architec-
ture is the same as the one for approach prediction with
the only difference being the replacement of the readout
layer (30 dimensional output linear layer followed by 30-
way softmax) at the end by a smaller one with 5 dimensional
output linear layer followed by 5 way softmax, correspond-
ing to the 5 difficulty categories.

6.4. LSTM : Pre-training

Since we did not have a lot of data for the approach predic-
tion task, we propose a novel pre-training method.

We train a LSTM with the same number of hidden units as
desired finally for the approach prediction task. However,
the final readout layer is the same as that for difficulty pre-
diction. We train this network on the difficulty prediction
task. Once that is done, we use the internal LSTM-LSTM
weights as initialization for the approach prediction task and
fine-tune from there.

The basic intuition behind this is that it is helpful to know
the algorithmic category of a problem for predicting its dif-
ficulty (human consensus of difficulty). This is because
problems certain categories such as Dynamic Programming
are generally considered difficult problems. Hence, the
hope is that in learning to predict the problem difficulty, the
LSTM will also learn some information about it algorith-
mic category since algorithmic category is a useful cue for
determining difficulty.

7. Training Details

We use negative log likelihood loss for approach as well
as difficulty prediction. While training we get the gra-
dient of this loss w.r.t. model parameters using standard
back-propagation algorithm. Since the amount of data we
have is quite small, we can use gradient descent instead of
stochastic gradient descent. This gives much cleaner train-
ing curves. We tune the learning rate by cross validation,
and we use early stopping for regularization.

8. Experiments and Results

8.1. Approach Prediction : No pre-training

Baselines : Our first baseline is the percentage of problems
in the majority class. This is the best output predictable in
absence of knowledge about the input. This gives 17.4%
accuracy.

The following baseline algorithms run quite fast and hence
we did stratified 5-fold cross validation to fit the hyper-
parameters. For each algorithm we report the accuracy on a

hold-out test set for the best hyper-parameters found using
cross validation

1. Random Forest : accuracy = 20.92%

2. XGBoost : accuracy = 9.5%

3. Logistic Regression : accuracy = 17.34%

LSTM :

1. hash-stream, vocabulary size = 5000, LSTM states =
5000 : accuracy = 14.79%. The training curves are in
Fig 2

2. word2vec, LSTM states = 300, accuracy = 15.54%.

8.2. Difficulty prediction

Baselines : Percentage of problems in the majority category
is again our baseline. This gives 33.75% accuracy on the
hold out test-set. The training curves are in Fig 3.

8.3. Approach Prediction : Fine-tuning

The replaced readout layer is initialized randomly. We ob-
tain 15.54% accuracy on the hold out test set. The training
curves are in Fig 4.

Figure 2. Approach prediction : One Hot Encoded Features

Figure 3. Difficulty prediction : validation

9. Analysis

We observe that most algorithms are doing only marginally
better than the majority prediction. This is true even for dif-

4



Figure 4. Fine-tuning : validation

ficulty prediction task. A major reason for this is that the
problem is fundamentally hard, even for trained domain ex-
pert humans. Thus, we either need a lot of data to either to
find all the regularities and predict correctly, or we need a
better starting point for our model. Training a more compli-
cated model with the current data is infeasible due to limited
dataset size.

10. Future Work

We think the following ideas / approaches might help for
this task.

• Most mathematical symbols and single letter variable
names are ignored by the word2vec model. Either ex-
plicitly modeling them, say as one-hot encoded over a
fixed vocabulary (i.e. you give one in the first position
when you see a variable. If you see a new variable,
give one in the second position. Now if you see the
first variable ever again, it will always get the first po-
sition turned on, and so on) might help the model keep
track of all the math symbols it has seen and find some
relationships.

• There is data available on the accuracy of each prob-
lem on www.codechef.com. Many other websites
also provide this information. Thus, another approach
can be pre-train to predict the accuracy of human sub-
missions on a problem which are indicative of the dif-
ficulty of the problem.

• One can also pre-train to predict the next word in the
problem. This is unsupervised training since we do not
need explicit labels for the problems.

• We can also use sentence2vec to get a sentence level
descriptor and train LSTM on that. This will be very
fast and memory efficient to train due to small number
of time steps. Thus, we can also afford larger LSTM
hidden units which will allow for more complex infer-
ence. The only issue is that the sentence2vec represen-
tation might not capture nuanced information which is

important for our task.

• Obviously, more data never hurts. There are plenty
of other websites like www.topcoder.com, www.
spoj.com which host plenty of data, although very
few provide actual tags.

11. Conclusion

We considered the problem of predicting algorithmic ap-
proach most useful for solving algorithmic problems given
only a natural language, riddle-like problem description.
This problem is highly non-obvious and stands in a stark
contrast as compared to most other problems in NLP. We
created two datasets for this prediction problem. We pro-
posed and evaluated several approaches. Our experiments
indicate that this is a very hard problem, and our results are
just better than the majority class prediction. We expect that
a deeper understanding of the text and algorithms is neces-
sary and we propose several promising directions for future
work.

References

[1] B. Amnueypornsakul and S. Bhat. Machine-guided solution
to mathematical word problems. 2014.

[2] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[3] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay. Learn-
ing to automatically solve algebra word problems. Associa-
tion for Computational Linguistics, 2014.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed representations of words and phrases and their
compositionality. In Advances in neural information process-
ing systems, pages 3111–3119, 2013.

[5] H. T. Siegelmann. Computation beyond the turing limit. Sci-
ence, 268(5210):545–548, 1995.

[6] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence
learning with neural networks. In Advances in neural infor-
mation processing systems, pages 3104–3112, 2014.

[7] S. M. Veres. Natural language programming of agents and
robotic devices. 2008.

[8] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neu-
ral network regularization. arXiv preprint arXiv:1409.2329,
2014.

5

www.codechef.com
www.topcoder.com
www.spoj.com
www.spoj.com

