
Learning to learn by gradient descent by reinforcement learning

Ashish Bora

Abstract

Learning rate is a free parameter in many optimization
algorithms including Stochastic Gradient Descent (SGD).
Choosing a good value of learning rate is non-trivial for im-
portant non-convex problems such as training of Deep Neu-
ral Networks. In this work, we formulate the optimization
process as a Partially Observable Markov Decision Pro-
cess and pose the the choice of learning rate per time step
as a reinforcement learning problem. On a simple quadratic
function family, our agents using Deep Q Networks are able
to outperform two simple baselines. We also implement a
strong baseline given by ‘Graduate Student Descent’ and
show that DQN agents approach its performance. Finally,
we present several visualizations that may be helpful to un-
derstand the DQN training process.

1. Introduction

Gradient based optimization is one of the most important
classes of optimization techniques. It has been extensively
used in a wide variety of settings, including the recent suc-
cess of Deep Neural Networks achieving state of the art per-
formance on many tasks [10, 4, 12].

Stochastic Gradient Descent (SGD) is probably the sim-
plest, and one of the very widely used gradient based op-
timization methods. Given a differentiable function f(θ),
to find the minimizer θ∗ of this function, SGD starts at a
randomly chosen initial point θ0, and then attempts to it-
eratively refine it to lower the function value. The refine-
ment is done by taking a step along the negative gradient
of the function with respect to parameters θ. Thus, if θt,
is the sequence of parameter values produced by SGD, we
have:

θt+1 = θt − η∇θtf(θt), (1)

where ∇θtf(θt) represents the gradient of the f(θ) at θt,
and η is the learning rate (also known as step size). We
shall call f(θ) interchangeably as loss.

It is quite important to select the learning rate η carefully. If
we choose a very large learning rate, it may lead to wild os-
cillations or divergence. On the other hand, choosing a very

Figure 1: Our approach. Function image is from
https://en.wikipedia.org/wiki/Saddle point

small learning rate, leads to slow optimization and increases
the chance of getting stuck in a local minimum.

While there is a good theoretical understanding, and practi-
cal algorithms to choose learning rates for convex functions,
the same is not true for many non-convex function families.
Particularly for important non-convex optimization prob-
lems, such as training of Deep Neural Networks, proper
choice of learning rate can give significant improvements.
In practice, methods like grid search or random search [3]
are often used to select the step size. Trial and error meth-
ods like these can be prohibitively expensive.

On the other hand, the loss trajectory as we apply SGD
gives important cues about a good value of learning rate.
Several rules of thumb about how the learning rate should
be changed, given a particular observation of this trajectory
are widely known. For example, if the loss is increasing,
showing large oscillations, or has saturated, it is advised
that the learning rate be reduced. Conversely, if the rate of
decrease of loss is too little at the beginning of learning, it
is recommended to try a larger learning rate.

With this motivation, we hypothesize that it should be pos-
sible to design an algorithm that can learn to set a good
value of learning rate by monitoring the optimization pro-
cess. In this work, we formulate this process as a Par-
tially Observable Markov Decision Process (POMDP) and
present an attempt towards using reinforcement learning to
choose the learning rate at every optimization step. On a
quadratic function family, our algorithm is able to outper-

1



form two simple baselines and approaches the performance
of a version of ‘Graduate Student Descent’ algorithm. We
also show several visualizations that throw some light on
the DQN training process.

2. Basic setup

In this section we describe our basic setup at a high level.
Further details are given in relevant sections. A schematic
diagram of our basic setup is shown in Fig. 1. The function
to be optimized (f(θ)) and the SGD optimizer are part of the
environment. At every time step, the agent is asked to pick a
learning rate for the SGD update. The SGD optimizer then
updates the parameters using the learning rate according to
Equation (1). At every step, the agent gets some observa-
tions about the current state of the environment, i.e. from
the SGD optimizer and the function, to help aid its deci-
sion. We treat this as an episodic task with fixed number of
time steps. The goal of the agent is to minimize the func-
tion. Accordingly, the total episodic reward is a function of
the final loss value (see section 3).

Similar to the setting in [2], we note that generalization in
our framework is with respect to a distribution over func-
tions that we would like to optimize. i.e. the agent is said
to have learned well, if after training on random functions
from a distribution over functions, it is able to optimize new
functions from the same distribution.

Additionally, considering all functions makes learning im-
possible due to No Free Lunch theorems [15]. Thus, we
restrict our agent to operate on a fixed class of parametrized
and differentiable functions that we would like to optimize
with SGD. We denote this class by F and the functions in
this class by f(θ) where θ are the parameters. Multiple
parametrized families can be part of F , which allows our
framework to handle a wide range of function classes, such
as neural networks with different architectures. We assume
a given fixed distribution (unknown to the agent) D over F ,
with respect to which we would like to generalize. Addi-
tionally, to handle several functions from F , each with a
different number of parameters, we constrain the observa-
tions that the agent gets to be of a fixed dimension irrespec-
tive of the function to be optimized.

At the start of every episode, a fresh random function f(θ)
is sampled such that f(θ) ∼ D. Our agent then tries on min-
imize this function by sending actions to the SGD optimizer
and getting observations from the environment.

3. POMDP formulation

The state of the environment at time t is given by St =
(f, θ0, t, θt), where f is the function we are trying to mini-

mize, θ0 is the initial value of the parameters, and θt is the
current value of the parameters.

To simplify the problem of choosing a learning rate, we
use a discrete set of possible learning rates. In our exper-
iments we use the set {10−2, 10−3, 10−4, 10−5, 10−6}. As
described in the previous section, when one of these actions
is chosen, SGD update with the learning rate chosen by the
action is applied. We add one more action called RESTART.
If this action is chosen, the parameters are reset to the ini-
tial point, i.e. θ0. This is why we need θ0 to be part of the
state.

In addition to transitions by SGD updates or RESTART, a
third type of transition is encountered at the last step of an
episode. If t = T , then irrespective of the chosen action,
we transition to the terminal state marking the end of the
episode. This is the reason t is part of the state.

At each step the agent gets the following observations from
the state:

1. 1− t/T , i.e. the fraction of time left.

2. log f(θt)

3. log ‖θt‖2

4. log ‖∇θtf(θt)‖2

We take logarithm to avoid very large or very small val-
ues.

Since the functions from F can have a very different range
of values, we focus on the relative decrease in the func-
tion value. Thus the total episodic reward is chosen to be
the natural logarithm of the relative change in the func-

tion value, i.e. log
(
f(θ0)

f(θT )

)
. Although giving this reward

at the final step is sufficient, it results in very sparse re-
wards. To avoid this, we distribute the rewards across time
steps using reward shaping [13]. Accordingly, the reward
given at time t is the relative decrease in function value, i.e.

log

(
f(θt)

f(θt+1)

)
. We use an undiscounted formulation so

that the total sum of per step rewards is exactly the same
as the desired total episodic reward. We assume f to have
non-negative values and for stability, we also add a small
constant (10−10 in our experiments) to both the numerator
and the denominator before taking the logarithm.

4. Deep Q-Network

We use Q-learning with function approximation to predict
the Q-values for all actions. Deep Q-networks were first in-
troduced in [12] and have showed impressive performance

2



on playing ATARI games. Inspired by their success, we also
use neural networks for approximating Q-values.

We note that since SGD is a stochastic method, the obser-
vations may fluctuate. Thus, the immediate set of obser-
vations may not be sufficiently informative to determine a
good learning rate. However, hidden beneath these varia-
tions, there usually are clear trends. Thus we also want the
state of the model to account for the history of the observed
values, not just the current ones. Additionally, we are in
a partially observable setting with very few observations at
each time step. Thus, similar to [12], we use stacking over
time to give more context to the DQN.

At the beginning of every episode, we do not have enough
observations to stack. So as a workaround, at the beginning
of every episode, we also give the agent some burn in. This
is done by taking several RESTART actions and stacking
the observations as a result. We do not increment t in this
process. Note that the reward for these steps is exactly zero
and the parameter values remain at their initial value, i.e.
θ0. Number of burn-in actions is set to equal the stacking
horizon so that the stack is completely filled up.

Other than stacking, the DQN architectures vary across ex-
periments and are described in the relevant sections.

5. Related Work

Choosing learning rates for optimization algorithms is a
widely studied problem. Several fixed learning rate sched-
ules, such as a exponential or polynomial decrease, are com-
monly used. By far, the simplest schedule is to fix a constant
learning rate. A popular choice is to use decreasing learning
rates that satisfies the stochastic approximation conditions.
These can be guaranteed to converge to at least a local min-
ima with probability one [11]. Another such method is the
Search Then Converge (STC) algorithm [6]. However, these
methods are agnostic to the problem at hand.

Adaptive methods such as backtracking line search are also
widely used. Other algorithms like RMSProp [14], Adagrad
[7], and Adam [9] try to change the optimization procedure
so as to approximate higher order moments using first or-
der information. These algorithms typically introduce more
hyperparameters in the learning process which need to be
tuned, but often give superior performance as compared to
a pure first order method like SGD. While these methods
do try to adapt to the problem at hand, they do not explicitly
optimize for the fact that we would like to stop the opti-
mization at a finite time.

The work in [2] is probably the closest to our work. This
paper introduces a framework where the optimizer is com-
pletely replaced by a LSTM. Each parameter value and the

gradient of loss with respect to that parameter is input into
an LSTM and the output is a single value denoting the up-
date to be applied to the model. The parameters of the
LSTM itself are then optimized using stochastic gradient
descent. Their method is also capable of learning approxi-
mate second or even higher order methods since the LSTM
cells have memory. Our approach in contrast is constrained
to first order SGD method since we are only predicting the
learning rate. Even so, our approach enjoys other advan-
tages over this work. First, our approach is highly scalable
since our agent gets a small set of observations and performs
limited computation on it, i.e. application of DQN. In con-
trast their method applies an LSTM per parameter. Second,
our formulation is generic and can work with any (possibly
non-differentiable) metric used as a reward function. For
example, our reward function can be the accuracy of a clas-
sification model while the model is being trained using SGD
with cross-entropy loss. Thirdly, The RESTART action al-
lows the agent to be more adventurous and let it try higher
learning rates.

Our work is also related to [5]. The limitation of our work
is that we consider only a finite set of possible learning
rates as opposed to continuous values used in this work.
Our discrete formulation however allows us to use include
a RESTART action.

6. Quadratic Environment

For our experiments, we use the following family of
quadratic optimization problems.

F = {‖aWθ − y‖2 | a ∈ R;W ∈ R10×10; y, θ ∈ R10}

We construct a distribution over these functions by taking
a to be an exponentially distributed random variable with
mean = 1, and each entry of W and y to be IID Gaussian
random variables with zero mean and unit variance. The ini-
tial value of parameters, θ0, also has IID Gaussian entries.
Once sampled, these values are kept fixed for the duration of
the episode and resampled at the beginning of each episode
to give a new function with a new starting point.

These functions are quite easy to optimize since they are
convex. In fact, we can determine the optimal step size quite
easily by finding the maximum eigenvalue of a2WTW . De-
spite the simplicity, we chose this environment as a test to
demonstrate the abilities of DQNs on this task.

7. Metrics

To monitor the training process and evaluate our agent, we
report the total reward per episode averaged over several

3



episodes, i.e.

1

N

N∑
i=1

log

(
f(θi0)

f(θiT )

)
= log

(
N∏
i=1

f(θi0)

f(θiT )

)1/N

,

where i indexes over episodes and N is the total number of
episodes used for averaging. We can interpret this metric
as the logarithm of the geometric mean of ratio of initial
function value to final function value.

We track this metric while training as well as evaluation.
While training, there is a finite probability of taking a ran-
dom action (see Section 9). This probability is zero while
evaluation. Accordingly, we see that the training metric is
lower than the evaluation metric.

8. Baselines

To compare the performance of our algorithm, we imple-
mented several baselines. These are described in this sec-
tion.

Our first baseline is the random agent. This agent just takes
random actions at each time step irrespective of the obser-
vations. Our second baseline is a fixed agent. It takes a
particular fixed action at each time step, again ignoring any
observations it may see. Among the many possible fixed
agents, one for each action, we only report results for the
one that maximizes our evaluation metric. These two base-
lines are very simple and ignore the structure of the problem
completely. Nonetheless, they are useful to understand the
problem space and set a minimum for the performance of
our DQN agents.

Our third baseline is named after ‘Graduate Student De-
scent’ [1], a pun on gradient descent. It is meant to stand
for informal search performed by graduate students do to
make their methods work. In our setting, we implement it
as a simple algorithm that looks at the history of optimiza-
tion for two time steps and makes decision accordingly. The
algorithm is given in Algorithm 1

Algorithm 1 Graduate Student Descent

1: Take the action with highest learning rate
2: while not done do
3: if the loss is decreasing then
4: take the same action
5: else
6: take RESTART
7: take action with a smaller learning rate

To implement this algorithm, the agent needs access to past
observations for at least two time steps. Thus, we give the

agent access to two past values of loss and the actions that
were taken. At time t, to make its decision the agent has
access to action taken and loss value at time steps t− 1 and
t − 2 and it has to select action at time t. Similar to DQN
agent, we also give burn in to this agent with two RESTART
actions at the beginning of each episode.

Results for baselines are shown in Fig. 2. Note that for these
agents, there is no gap between the training and evaluation
performance. All rewards are scaled up by a factor of 10.
We see that random agent gets an average reward of about
2.6, which translates to ∼ 1.3 fold decrease in function
value on average (geometric mean). The agent with fixed
learning rate 10−3 achieves the best performance among
fixed agents. It gets an average reward of about 17.8(∼ 6
fold decrease). Graduate Student agent achieves the best
performance with an average reward of about 33.2 (∼ 27.6
fold decrease).

9. Experiments

For training of DQNs, we follow Algorithm 1 in [12]. We
use a large experience replay memory to reduce the cor-
relation between updates to the Q network. We decrease
the value of ε linearly from 1 to 0.1 over the first one mil-
lion updates after which it is held constant. This makes
the DQN learning method an instance of off-policy learn-
ing. We also use a target Q network to further decorrelate
Q network updates, and gradient clipping to stabilize DQN
learning.

In all our experiments we set T , the number of steps per
episode to be 100. All rewards are scaled up by a fac-
tor of 10 to bring them in a better range. The training
batch size is kept at 32 and gradient clipping at 10. Train-
ing metric is averaged every 200 episodes. The evalua-
tion is performed once every 2000 training episodes and
is averaged over 1000 episodes. For all experiments, we
do a grid search over optimization algorthms and learn-
ing rates. We tried Adam [9] and RMSProp [14] as our
optimization algorithms and all learning rates from the set
{10−1, 10−2, . . . , 10−6}.

9.1. Stacked observations with depth-2-DQN

In this experiment we stack the observations over time 8
time steps. Since the agent gets 4 observations from the
environment at each time step (Secion 3), the input to the Q
network is of size 8 × 4 = 32. We use a two layer neural
network architecture. First linear layer maps the inputs to 12
hidden units. This is followed by a ReLU non-linearity and
another linear layer maps them to 6 outputs corresponding
to 6 Q-values. We update the target Q network every 200
training episodes.

4



(a) Training (b) Evaluation

Figure 2: Average reward per episode while training (left) and evaluation (right), for baselines and various DQN agents

Results are shown in Fig. 2. From the grid search, we show
only the best results for Adam as well as RMSProp. Both
algorithms achieve the best results at learning rate 10−4,
while the one with Adam is slightly better. We see that the
best DQN agents perform about as well as the fixed agent
on the evaluation metric. These agents are outperformed by
a large margin by the Graduate Student agent.

9.2. Adding actions to DQN state

The Graduate Student agent has access to the history of ac-
tions that were taken in the past. This information is not
available to the DQN agent if we only stack the observa-
tions. Thus, in this experiment, we tried to add the history
of actions taken to the DQN input. Since ordering of actions
is arbitrary, we use a one hot encoding on actions yielding
a vector with size equal to the number of actions (6 in our
case) per time step. After stacking for 8 timesteps, the input
to DQN is thus of dimension 8 * (4 + 6) = 80 inputs. Since
the number of inputs is larger, we also increase the size of
hidden layer of the DQN to 32. Rest of the architecture
remains the same.

Results are shown in Fig. 2. From the grid search, we ob-
serve that the best results are obtained with Adam and a
learning rate of 10−6. The performance improves over not
using actions in the state. On the evaluation metric, the best
DQN agent achieves 27.22. This is still smaller than 33.2
achieved by the graduate student.

9.3. Deeper architecture

It is quite surprising that the DQN agent did not achieve per-
formance comparable to the Graduate Student agent. Both
agents have access to exactly the same information and
hence the DQN agent had the opportunity to learn the same
rules as the Graduate Student agent. One possible expla-
nation for this is that the DQN is not expressive enough to
perform the kind of computation the Gradute Student Agent
does. To test if this was true, we tried DQN architecture
with a larger depth and more hidden units.

Inputs to the DQN are same as the previous experiment,
i.e. stacked observations and stacked actions. These are
then linearly mapped to 128 units followed by a ReLU non-
linearity. They are then linearly mapped to 64 units, again
followed by a ReLU. Finally we again linearly map from 64
to 6, to get 6 Q-values, one for each action.

The results are shown in Fig. 2. We see that more depth
seems to give no benefit. Theoretically, model with more
depth can learn to mimic the smaller one and hence should
have been at least as good. But it might be the case that
the models are not getting enough samples for some of the
actions and hence it is hard to learn well. We shall explore
this in the next experiment.

9.4. Eigenvalue distributions

In this experiment we aim to understand our environment
a bit better, aiming to explain why the DQN agents do not
perform as well as the Graduate Student agent.

Recall that we are working with functions from a quadratic

5



(a) Exponential (b) Multimodal

Figure 3: Optimal fixed step size distribution with exponential (left) and multimodal (right) distribution for a.

family (section 6). For functions from this family, we can
compute the optimal fixed step size as the inverse of the
maximum eigenvalue of a2WTW . Using any learning rate
smaller than twice the optimal one leads to convergence
(from any starting point), but the rate of convergence be-
comes slower as we deviate from the optimal value. Using
a learning rate larger than twice the optimal value may lead
to divergence (depending on the initial point).

Fig. 3a shows the distribution of the logarithm (base 10) of
the optimal fixed step size. We see that for most functions
10−2 is the best fixed learning rate among the ones available
to our agent and for a considerable fraction 10−3 is a good
choice. For most functions very small learning rates are
not needed. This also explains why 10−3 is the best fixed
learning rate: it achieves good performance on most prob-
lems while making mistakes on a relatively small fraction
of the problems. Such distribution however is potentially
problematic for the DQN agents because the action distri-
bution is skewed. In effect the agents rarely see any exam-
ples where actions 10−6 or 10−5 are good. Most examples
give high rewards for 10−2 and 10−3. This skew may be
one explanation for poor DQN performance.

9.5. Multimodal Environment

It is plausible that having a more equalized distribution of
best actions would help in learning. Thus we propose a new
distribution over the quadratic function family, which we
call Quadratic-Multimodal. Here, instead of sampling a
from the exponential distribution, we sample a uniformly
at random from the set {100, 100.5, 101, 101.5, 102}. Fig.
3b shows the distribution of the logarithm (base 10) of the
optimal fixed step size for this environment. This is much
more balanced than the previous distribution.

We run the same baselines on this environment. The results
are shown in Fig. 4. Unlike previous environment, random

agent now get large negative rewards. For this environment,
the best fixed agent is the one that takes the action with the
smallest learning rate, 10−6. This is to be expected because
there is a significant portion of functions for which higher
learning rates lead to divergence.

Out of our previous DQN experiments, depth two gave
the best results. So we use the same for DQN models on
this environment. We tried stacking only observations, and
stacking observations and actions. For each experiment, we
again do grid search over optimization algorithms and learn-
ing rates. Best results are achieved by using learning rate
10−5 and Adam optimizer for both models.

Broadly, the results are similar to the previous environ-
ment. The DQN models are slightly better than the best
fixed agent. The DQN with observations and actions per-
forms better than the one without access to actions. Both of
them are still outperformed by the Graduate Student agent.
This means that unbalanced action distribution may not be
the sole or the primary reason for poor performance of
DQNs.

9.6. DQN training visualizations

To further dig into the DQN learning process and under-
stand the problems, in this experiment, we logged several
statistics as the network trains and present three visualiza-
tions based on this data.

TD loss is shown in Fig. 5a (bottom right). For most models
we see that the loss is going down as we train. This is the
desired behavior. For the model in second experiment, the
loss goes down but then starts to increase.

Histogram of actions taken by various agents is shown in
Fig. 5b. We see that the DQN agents are taking a variety of
actions, while still performing only marginally better than
the agent with fixed action. Taking a variety of actions while

6



(a) Training (b) Evaluation

Figure 4: Average reward per episode while training (left) and evaluation (right) on the multimodal environment

training is a good sign of exploration.

Histogram of Q values is shown in Fig. 5a. These show a
consistent increase in the Q values. Although Q learning is
known to overestimate the sum of future rewards, the plots
show that the estimated values are very large as compared
to the average reward per episode. Thus our models are
grossly overestimating the Q values. This may be one of the
explanations for why the DQN agents are not performing as
well as the Graduate Student agent.

9.7. Slower target Q update

One of the reasons for large overestimation of Q values can
be too frequent update of target Q network. This results in a
feedback loop through which Q values can keep increasing
indefinitely. Thus in this experiment we try to decrease the
frequency of target network update.

In our previous experiments, we updated the target Q net-
work every 200 episodes, i.e. after every 20000 updates. We
try two larger values: updating after every 600 episodes and
after every 2000 episodes. For each setting, we again do the
grid search and find that using Adam optimizer with learn-
ing rate 10−6 and update target network every 600 episodes
gave the best results.

This experiment was done using the original distribution (a
is an exponential random variable). The results are shown
in Fig. 2. We observe that with this modification, the
performance improves by a large margin. The best DQN
agent now achieves 32.06 on the evaluation metric which is
quite close to the performance of the graduate student agent
(33.23).

10. Discussion and Future work

In terms of formulation, we can also try to optimize for
number of steps in the training. i.e. we can add an extra
action which results in termination of the SGD procedure.
To encourage fewer optimization steps, we can give a small
negative reward at each time step.

Actions such as restart or terminate are discrete and hence
in this work, we used a simpler formulation of discrete set
of values for learning rates. It might be useful to consider
mixed action types so that we certain discrete actions, but at
the same time model the learning rate choice as a continu-
ous action space.

As seen on the experiments, the DQN agents are still unable
to outperform the Graduate Student agent. Thus exploring
other state representations, other DQN architectures, trying
other optimization algorithms or better hyperparameter set-
tings are some of the things that can be helpful. It may also
be useful to try simpler function approximators like linear
functions with tile coding.

Ideally the DQN should use the full history of observations,
not just a stack of the previous few time steps. Thus, we
can use a Recurrent Neural Network (RNN) to consume the
set of observations gathered as a part of the interaction with
the environment at each time step. We can use another neu-
ral network which maps the hidden state of the RNN to Q-
values for each of the possible actions. This architecture is
similar to Deep Recurrent Q learning [8].

In this work, we used a simple quadratic function family.
For this work to be useful, it is necessary to try similar ideas
for training of more complex and non-convex models like
neural networks.

7



(a) Q values and TD Loss plot. X axis is training episodes (b) Action Distribution. X axis is action IDs, Y axis is training
episodes, Z axis is histogram strength

11. Conclusion

In this work, we studied the problem of choosing the learn-
ing rate for gradient based optimization problems. We for-
mulated it as a POMDP and deployed Deep Q Networks
to learn controllers for this task. On a simple quadratic
function family, we have shown that DQN agents outper-
form simple baselines and get very close to the performance
of a strong baseline. We have shown visualizations of the
training that throw some light on the inner workings of the
DQN training process and helped us fix some crucial hy-
perparameters. Finally, we briefly discussed several inter-
esting directions of future research which can build on this
work.

Acknowledgement

The author would like to thank Matthew Hausknecht for
several useful discussions and tips about the problem setup
and DQN training.

References

[1] https://sciencedryad.wordpress.com/2014/01/25/grad-
student-descent/.

[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman,
D. Pfau, T. Schaul, and N. de Freitas. Learning to learn
by gradient descent by gradient descent. arXiv preprint
arXiv:1606.04474, 2016.

[3] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search, 13(Feb):281–305, 2012.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language pro-
cessing (almost) from scratch. Journal of Machine Learning
Research, 12(Aug):2493–2537, 2011.

[5] C. Daniel, J. Taylor, and S. Nowozin. Learning step size
controllers for robust neural network training. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[6] C. Darken and J. E. Moody. Note on learning rate schedules
for stochastic optimization. In NIPS, pages 832–838, 1990.

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159,
2011.

[8] M. Hausknecht and P. Stone. Deep recurrent q-learning for
partially observable mdps. arXiv preprint arXiv:1507.06527,
2015.

[9] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In

8



Advances in neural information processing systems, pages
1097–1105, 2012.

[11] H. Kushner and G. G. Yin. Stochastic approximation and
recursive algorithms and applications, volume 35. Springer
Science & Business Media, 2003.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[13] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under
reward transformations: Theory and application to reward
shaping. In ICML, volume 99, pages 278–287, 1999.

[14] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 4(2),
2012.

[15] D. H. Wolpert and W. G. Macready. No free lunch theorems
for optimization. IEEE transactions on evolutionary compu-
tation, 1(1):67–82, 1997.

9


