
Low-supervision visual learning through cooperative agents

Ashish Bora
ashish.bora@utexas.edu

Abhishek Sinha
as1992@cs.utexas.edu

Abstract

There are a lot of unlabeled images available on the inter-
net. Although we do not have explicit visual labels for these
images, we observe that we can create a supervisory signal
by asking a system to find one image from a collection of
several images based only on a restricted signal. The sig-
nal can be a natural language description, or a question
and an answer.

To explot this supervision, we propose a system of two
agents which play a partial information cooperative game
to complete the disambiguation task. We hypothesize that
we can usefully restrict the communication type and direc-
tion to force these agents to learn visual cues. We expect
that for interpretability of the communication, we would
need some supervision on human interpretations of the sym-
bols communicated and thus, we propose to use supervised
pretraning followed by semi-supervised finetuning. In this
work, we present an attempt at proof of concept of this idea
using image attribute prediction as our underlying task. The
project code can be found at https://github.com/
AshishBora/vision-project

1. Introduction

Most of the success of deep neural networks has been in
supervised learning tasks ([10], [21]). The main bottleneck
in this approach is that it needs a lot of labeled training data
([15]). This is cumbersome and expensive.

More recently, there has been a flurry of work in transfer
learning in deep neural networks. The prominent approach
here is to initialize the network from a pretrained model
on an auxillary task and finetune only the last few layers.
This approach has shown good results on various tasks, es-
pecially due to availibility of models pretrained on imagenet
category prediction task ([4], [14]). Transfer learning is still
limited by availibility and compatibility of labeled data on
the auxiallary task. For example, spatial invariance is fun-
damental to category prediction, while not so desirable for
object detection or spatial reasoning based Visual Question

Figure 1. High Level Idea – A and B are 2 agents. A has images of
2 different dogs and C has image of one of the dogs (dalmation).
A asks questions (attribute questions) and C answers them. Here
we have simplifed the answers to Yes/No though in reality they
would be confidences. Finally A must output its guess for the
image possesed by B.

Answering (VQA).

Unsupervised learning has been relatively less explored.
The approach is essentially the same as in transfer learning,
i.e. to pretrain on an auxiallary task. The major difference is
that the labels for the auxillary task are automatically gener-
ated. Stacked Denoising Autoencoders[2] try to reproduce
the input from a corrupted version of it. Deep Belief Nets[6]
pretraining tries to learn a generative model per layer. These
methods are data domain agnostic.

Specifically for computer vision, the focus in many prior
works has been to learn good image embeddings by exploit-
ing structure in visual data. For example, [13], [19] use
temporal consistency in videos, and [3] uses spatial con-
sistency in single images to learn image embeddings. [8]
learns image representations that are equivariant with re-
spect to ego-motion transformations. These methods use
the domain knowledge to extract labels, and design a spe-
cific loss function which is then used for unsupervised pre-
training.

We propose a new unsupervised learning method which is
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data domain agnostic but task specific. In particular, our
label extraction and loss are independent of data domain
or task. On the other hand our framework uses a commu-
nication channel which can be tailored to suit the task at
hand.

The rest of the paper is organized as follows. Section 2
presents our main idea. In section 3 we survey some re-
lated work. Section 4 briefly describes the attribute pre-
diction task, related previous work, and the dataset we use.
Section 5 describes a simplification of the general frame-
work, which is used in this work to evaluate our idea. We
show the network architecture we use in Section 6. Sec-
tion 7 discusses the challenges and potential pitfalls in our
system and our attempts at a solution to them. The next
section outlines the training procedure we used. Section 9
presents the experimental results and analysis. Finally, we
conclude with discussion and future work in sections 10 and
11.

2. Our Idea

Finding an object from a collection of objects, based on a
restricted description is a basis of many popular games. For
example in the game of charade, an entity or word is con-
veyed through miming or other physical communication. In
pictionary, a word is to be communicated through drawings,
but you are not allowed to write the word directly. In guess
who? or twenty questions, the objective is to guess the card
the other person has based on yes/no questions.

We observe that the common thread in all these tasks is dis-
ambiguation from a collection of several different objects
based on limited but disambiguating information. Thus, we
propose the following system:

The basic setup is as follows: There are two agents. The
first agent (A) has a lot of image(s), while the other agent
(B) has only one of them. Either agent does not know which
images the other agent has. The task of A is to identify
the image that B has. For this purpose, they can commu-
nicate with each other through some restricted communica-
tion channel.

It is important to recognize that there must be some restric-
tion on the communication modality. Otherwise, the agents
can communicate information which is not tied to high level
visual concepts to distinguish the images. For example,
they can exchange pixel values with locations .These will
be very discriminative, but are not tied to high level visual
understanding. Thus the idea is that by usefully restricting
the communication modality, we can force these agents to
learn interesting visual cues about the images.

Based on the restrictions on the communication modality

and direction, we get different algorithms which will train
the agents to do different tasks. The particular setup we
explore here is question-answer type communication about
attributes (see section 10 for other types). More concretely,
the setup is as follows: A can send a question to B. Based
on the image it has, B produces an answer to A’s question.
Based on the images it has, the question it asked and the
answer it got, A decides either to ask another question or
outputs its guess for the image it thinks B has. This is illus-
trated in Fig 1.

For our setting, the questions are about attributes in the im-
ages. Thus B learns attribute prediction and A learns to ask
attribute based questions that can help disambiguate the two
images it has.

3. Related Work

Our work is greatly inspired from the seminal work of [18].
In this paper, the authors describe a cooperative 2 player
game called Peekaboom. In this game, there are 2 players
called Peek and Boom. Boom initially has a word, image
pair with him(or her) while Peek has a blank image. In each
step Boom can only reveal a small portion of the image to
Peek and in the end if Peek can guess the word, the 2 play-
ers win else they loose. Boom has an incentive to reaveal
only those portions of the image which correspond to the
word. Hence, this game provides an unsupervised way for
creating word to bounding box mappings. We try to extend
this idea of using cooperative games to create labelled data
for computer vision algorithms to improving their perfor-
mance.
Another work which is close to ours is [20]. In this paper,
the authors describe a technique for generating question-
answer pairs for a single image which they refer to as Self
Talk. However, they train the Question Generation LSTM
and Answering LSTM independently. The Question LSTM
is trained using image and human question pairs whereas
the Answer LSTM is trained using image, question and an-
swer triplets. After this, self talk for a new image can be
generated as follows – use the question generating LSTM
to sample multiple questions and use the Answering LSTM
to generate the corresponding answers. Our system is de-
cidedly different from their’s in generating the question-
answer pairs in an unsupervised way where learning is car-
ried out by disambiguating among images. Also, in their
system question-answer generation seems to be the end goal
whereas in our case it is a means to an end.

Another work that is closely related to ours is Image De-
scription with a Goal by Sadovnik, Chiu et al [16]. In the
paper, the authors try to generate a short description for a
target image that discriminates it from a collection of im-
ages. They also describe a new quantitative metric to mea-
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sure the effectiveness of the description. However, there is
no notion of multi-round communication in their approach.
Also they use handcrafted feature engineering to generate
the scores for different items with respect to the target im-
age.

Another work related to ours is Image Specificity by Jas and
Parikh et al [7]. In this paper the authors introduce the no-
tion of specific images which they define to be images that
elicit consistent descriptions from different people. Intu-
itively pairs of images with high specificity scores are easier
to disambiguate than pairs of ambgious images which have
low specificity scores. However pairs of low specificity im-
ages seem to be more suited to our multi-round communi-
cation framework since we expect that multiple rounds of
question-answering to search over a larger space of possi-
bilities.

4. Attribute Prediction Task

Attribute prediction task is the following: We fix a finite
set of visual attributes apriori. These usually describe a
large part of the image such as dark, snowy, vegetation, etc.
Given an image, we want to predict how strongly each at-
tribute exists in that image.

As a baseline we use the Deep Carving model introduced
in [17]. The average precision across all test images, as
used in the same paper, is the metric we shall use for eval-
uation. Precision for single image is fraction of its top-k
attributes that are also in the ground truth attributes, where
k is the number of ground truth attributes. As per the pa-
per, the Deep Carving model achieves average precision of
52.53, but we learn from the authors (and can reproduce)
that a simple change in thresholding yields 61.01 average
precision.

We use the SUN Weakly Supervised dataset introduced in
[17] for training of C because it provides the attribute most
strongly present for each training image. While training A
and finetuning the whole system however, we can poten-
tially use any (even unlabeled) images. To keep the input
distribution similar to what was used to train C, we use the
images from SUN Attribute dataset [12]

5. Simplification

To get a proof of concept and to debug the idea, in this
work we consider the following simplified version of the
system:

1. Agent A has only two images

2. There is only question-answer round

Since there is no back and forth question answering, we can
split agent A into two agents (A and C) and create a feed-
forward network. This is shown in Fig 2. Here, A is the
questioning network: it takes two images as input and asks
a question. B is the answering network: it has access to one
of the images with A (randomly selected) and it answers
A’s question. C is the judgement network: it has the same
two images that A has, and based on A’s question and B’s
answer, it is supposed to ouput its guess for which image it
thinks B has.

Figure 2. Simplified Architecture – Two Images, Single Question,
Feed-forward

6. Network Architecture

We now describe in detail the architectures for A, B and C.
Firstly, we note that while A, B and C all take images as
input, in the diagrams we show them taking 4096 feature
vectors as input for clarity.

A thus takes the two 4096 dimensional vectors and com-
putes 42 dimensional attribute vectors from them using a
fully connected layer. There is weight sharing between both
the fully connected layers. This fc layer is followed by a
sigmoid layer. The next layer is an 84 to 42 fully connected
layer with a 42-way softmax layer in the end. The output
of A which is a soft combination of attributes can be inter-
preted as a question vector.

B also has a 4096 to 42 fully connected layer followed by
sigmoid layer. It then takes a dot product with the incoming
question vector to produce a single value (confidence) as the
output.

C initally has two units with the same architecture as B.
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These two units share weights with each other and com-
pute two values correponding to the two images. These
two values are merged with the input confidence to get a
3-dimensional vector. After this there is a 3 to 2 fully con-
nected layer followed by an Absolute Value non-linearity.
Finally there is a 2 to 1 fully connected layer followed by
sigmoid non-linearity. The value output is C’s estimate of
the probability of the Image1 being present with B.

Figure 3. Questioning Network (A). Double Arrow indicates
weight sharing and Trapezoids indicate fully connected layers.
Non-Linearities are not shown to avoid clutter

Figure 4. Answering Network (B). ⊗ indicates dot product

7. Challenges and Solutions

We describe the challenges we faced while getting this
system to work followed by solution approached we
tried.

1. The interpretability problem: The two agents can
conspire to communicate in a strange code language
that humans do not understand. This can make each
learner useless in absence of the others. This problem
is fundamental. If we do not provide our human in-
terpretations to these agents, the unsupervised method
has no way to become interpretable since any permuta-
tion mapping between human interpretations and code

Figure 5. Judgement Network (C)

language interpretations works just fine for the purpose
of disambiguation.

2. Mimicking : The two agents can simply learn to mim-
ick each other exactly and not learn anything visual.
i.e. they can both compute the same non-visual func-
tion from image to attributes and just compare the re-
sults.

3. Weak Supervisory Signal : The signal of whether the
image was correctly identified or not is at most a single
bit of information. It is challenging to backpropagate
this signal through a deep network.

Based on the observations made above we deploy the fol-
lowing solutions which might help in training:

• The interpretability problem: First solution is super-
vised pretraining. i.e. We first pretrain B to do theat-
tribute prediction task, but in a supervised way with
human interpretable language. We then freeze B and
train others to converse with B which forces them to
learn human interpretations as well. Then, we finetune
from there.

We also tune B on original task intermittently while the
whole system is being finetuned to avoid any potential
drift from interpretability.

• Mimicking : To avoid this, we use dropout in all mod-
els. Thus due to randomness in dropout the models
cannot rely on each other. We also do independent ran-
dom cropping and horizontal flipping on images that
A, B and C get. Thus, they see slightly different ver-
sions of the same input which will make them more
robust.
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Another thing to try would be to have very different ar-
chitectuers for the two networks so that it is non-trivial
to mimick each other. We have not used this idea in
the current work.

• Weak Supervisory Signal : We expect that using a
large batch-size and low learning rate would help in
training.

8. Training Details

8.1. Encoding

Question encoding : We consider a set of 42 attributes as
in the SUN Weakly Supervised datset. The question is
then encoded as a probability distribution over these at-
tributes.

Answer encoding : Answer is a single number which is the
dot product of the question vector with the image attributes
predicted by B. Thus, if A asks a question that peaks at a
particular attribute, the output is close to the probability that
the attribute specified in the question exists in the image
with B. We could also have used one-hot encoded questions
which are sampled from the softmax output of A, but we hy-
pothesize that A will have to ask peaky questions since non-
peaky questions are likely to be non-discriminative.

8.2. Training order

We follow the following training order:

1. Supervised pretraining of B to answer questions. (We
just reuse the pretrained Deep Carving model)

2. Supervised pretraining of C to understand B and cor-
rectly identify the image B has. For this task, we need
questions that will be asked to B. For the SUN Weakly
supervised training dataset, for each image, we know
the attribute which is most strongly present. We ran-
domly pick strongest attribute of one of the images and
ask a one-hot encoded question about it.

3. Semi-supervised training of A by fixing B and C : We
just use the SUN Weakly supervised training set. We
do not need any labels at this point.

4. Semi-supervised finetuning of A, B and C together :
We use SUN Weakly Supervised as well as SUN At-
tribute DB images

For all tasks where two images are required, they are sam-
pled independently from the training dataset. We do not ex-
plicitly ensure that they are from different classes.

8.3. Training objective

For training C, training A and then joint finetuning, we must
define a loss based on whether the correct image is identi-
fied or not. The final Loss neuron (Fig 2) will be a sigmoid
output between 0 and 1 representing a probability of the im-
age being the 1st image. Let (xi, yi)

m
i=1 be the training set

where each xi is the ordered pair of two images and yi is the
index (0 for image-0 and 1 for image-1). of the image out of
those two to be given to network B. Let θ be the parameters
of the model. For the i-th training example, Let p(xi; θ) be
the output of the loss neuron and yi be the actual label. We
will use the following cross-entropy loss:

L(θ) =

m∑
i

(yi log(p(xi; θ)) + (1− yi) log(1− p(xi; θ)))

9. Experiments

9.1. Experimental Procedure

We use the pretrained attribute prediction model of [17]
for B. We use the following metrics to evaluate our mod-
els:

1. Average precision for attribute prediction: initially and
afte finetuning B with our procedure

2. Accuracy for image disambiguation across all the ex-
amples

3. Qualitative inspection of the kind of attribute questions
asked by A

9.2. Results and analysis

9.3. Experiment 1 : Fix B, train C with mimick-
ing

We finetuned C with B and C mimicking the weights of the
Deep Carving model. This should ideally very quickly con-
verge to a very low error. This experiment serves two pur-
poses: first it helps ensure that the our implementation is
correct. Secondly, it gives a sanity check that the model ar-
chitecture has enough capacity to perform its task. We also
shut down random cropping, horizontal flips and dropout
for this sanity check experiment. Fig 6 shows the training
curves. As expected we achieve very high accuracy (about
96%).

9.4. Experiment 2 : Fix B, train C without mimick-
ing

We trained C from scratch with B initialized to be the Deep
Carving model. Fig 7 shows the training curves. We achieve
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Figure 6. Learning Curve for C with mimicking

about 86% accuracy. At this point we stop the training since
otherwise C will start copying weights from B. Thus, to
maintain some difference, we use early stopping.

Figure 7. Learning Curve for C trained from scratch

9.5. Experiment 3 : Fix B and C. Train A

We trained A from scratch with B initialized and fixed to the
Deep Carving model, and C fixed to be the model from the
previous experiment. Fig 8 shows the training curves. We
see that no learning whatsoever is taking place. We con-
firmed that A is indeed recieving gradients at each iteration.
Although it is not clear why this happens, one possible rea-
son is that C is mimicking B. Thus, there is no need for A to
ask a good question: alsmost every question is disambiguat-
ing enough.

Figure 8. Learning Curve for A

9.6. Experiment 4 : Finetune the whole sys-
tem

We use A and C models as obtained from the previous ex-
periments. We finetune the whole system on images from
SUN Weakly supervised dataset as well as the full SUN
dataset. At this point the training procedure does not need
any labels and can be tuned on unlabeled images as well.
We used SUN images because we wanted the unlabeled im-
ages to have roughly the same distribution as lableled ones.
The training curve is shown in Fig 9. We see that there
is very little improvement initially, followed by a steep de-
crease and then the error stabilizes again. On the other hand,
we do not see any improvement on the original attribute pre-
diction task as we finetune B.

The finetuning procedure is minimizing a different loss
function that the original attribute prediction task. Thus,
it is expected that the new loss surface will have a minima
at a different location than the local minimum achieved by
the Deep Carving model. Nonetheless, it is quite interest-
ing that the finetuning procedure did not break the origi-
nal model. Our hypothesis is that the minimum of the un-
supervised finetuning method and that of the deep carving
method are very close and that is why the performance is
not hurt by a large margin. Since the minimas would most
likely be different, we still see a small drop from 0.61 to
0.605 in the average precision on the attribute model pre-
diction (See Fig 10)
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Figure 9. Learning Curve for B

Figure 10. Variation of Average Precision of finetuned B model
with number of iterations

10. Future Work

We should first investigate why A is not learning anything
at all.

The approach is quite general, but we have restricted it to
a simplified model as a first step. Thus, the idea can be
applied to more complicated tasks such as VQA [1][11] and
Dense Captioning [9] [5].

For VQA, the question can be encoded as a natural language
question followed by the ? token. Answer can be taken to be
single word or even natural language answer. Both question
and answer can be represented as sequence of one-hot vec-
tors over a fixed vocabulary or as word2vec vectors. Due
to variable length of the questions, and answers we can use
RNNs for all the agents.

Another extension is to use multiround communication, i.e.
several messages are exchanged between the two agents
back and forth. This would obviously demand that each
agent be recurrent.

For Dense Captioning task, the communication restriction
is a bit different. In this case, B gives natural language de-
scriptions of the image it has. Based on this A has to tell
whether it can guess the image that B has. If not, it requests
another description from B (at some cost). Finally A has to
output a guess for B’s image and gets rewarded if its correct.
It is easy to see that multiround communication is vital for
this procedure to work.

11. Conclusion

We proposed the novel idea of cooperating agents for low-
supervision visual learning. Though we haven’t got any
positive results till now, we are investigating the pitfalls and
plan to make changes in our system to address them.
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